
Lecture 11:

How to Balance

a Tree

1
These slides include material originally prepared by Dr. Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole.

Announcements

● Exam 2 tomorrow
○ See Piazza/e-mail for details

○ Must go to your assigned room

● Exam 3: Cornerstone apps due end of this week

● Lab 11 out this week
○ Pre-lab due Tue. 4/9; rest due Fri. 4/12

2

Review: Worst-Case Costs for BST Operations

● Find – Θ(h) for tree of height h

● Min/Max – Θ(h) for tree of height h

● Insert – Θ(h) for tree of height h

● Iterate – Θ(h) for tree of height h

● Remove – Θ(h) for tree of height h

3

How Tall Can a BST with n Nodes Be?

● Insert keys 1..n in order

4

1

2

3

n

…

How Tall Can a BST with n Nodes Be?

● Insert keys 1..n in order

5

1

2

3

n

…
Tree height is

worst-case Θ(n)

Can We Overcome

Worst-Case Θ(n)

Costs for Tree

Operations?

6

What If Our Trees Were Never Too Tall?

● Defn: a binary tree with n nodes is said to be balanced if it

has height O(log n).

● Example: a complete binary tree with 2n-1 nodes has

height n – 1, so is balanced.

● In a balanced BST, all BST ops are worst case O(log n).

7

Strategy for Balancing Trees

1. Define a structural property P that applies to only some

BSTs

2. Prove that BSTs satisfying property P are balanced

3. Make sure a trivial BST (one node) satisfies P

4. Show how to insert, remove while maintaining P

8

From the End of Lecture 10, through Today

● AVL tree – heights of left, right subtrees of every node

differ in height by at most 1

● Prove that AVL property implies balance

● Show how to maintain AVL property under insertion,

deletion

● (After that, a different approach to balanced trees!) 9

How do we maintain AVL property efficiently?

● Lecture 10 (AVL property)

+ Studio 10 (order stats in trees)

10

Checking the AVL Property

● To check AVL property for tree T, we will maintain height

of each subtree of T in subtree’s root.

11

10

7 13

16

14

5 9

62

11

Checking the AVL Property

● To check AVL property for tree T, we will maintain height

of each subtree of T in subtree’s root.

12

10

7 13

16

14

5 9

62

11

0 0 0

0 01 1

2 2

3

Checking the AVL Property

● To check AVL property for tree T, we will maintain height

of each subtree of T in subtree’s root.

13

10

7 13

16

14

5 9

62

11

0 0 0

0 01 1

2 2

3You studied how to

maintain height (and size)

under insertion, deletion in

Studio 10, Part C.

Key Measurement: Balance Factor

● For any node x, the balance factor of x is the difference

(height of right subtree of x – height of left subtree of x)

14

10

7 13

16

14

5 9

62

11

0 0 0

0 01 1

2 2

3

Key Measurement: Balance Factor

● For any node x, the balance factor of x is the difference

(height of right subtree of x – height of left subtree of x)

15

10

7 13

16

14

5 9

62

11

0 0 0

0 00 -1

-1 +1

0

Key Measurement: Balance Factor

● For any node x, the balance factor of x is the difference

(height of right subtree of x – height of left subtree of x)

16

10

7 13

16

14

5 9

62

11

0 0 0

0 00 -1

-1 +1

0

Can compute balance

factor from subtree

heights in O(1) time.

Balance Factor for AVL Trees

● Every node of an AVL tree has a balance factor of either

???, ???, or ???

17

Balance Factor for AVL Trees

● Every node of an AVL tree has a balance factor of either

-1, 0, or +1

● (Follows because subtree heights cannot differ by > 1.)

● Question: if we add or remove a node to/from an AVL

tree, by how much could the balance factors of its nodes

change?

18

Inserting a Node into an AVL Tree

19

x

TL

TR

h
h+1

Before insertion, balance is 0 or +-1. Here, we show -1.

Inserting a Node into an AVL Tree

20

x

TL

TR

h
h+1

Insert k Balance(x) = -1

Inserting a Node into an AVL Tree

21

x

TL

TR

h
h+1

Balance(x) = ???

k

Inserting a Node into an AVL Tree

22

x

TL

TR

h
h+1

Balance(x) = 0 (still an AVL tree)

k

Inserting a Node into an AVL Tree

23

x

TL

TR

h
h+1

Balance(x) = ???

k

Inserting a Node into an AVL Tree

24

x

TL

TR

h
h+1

Balance(x) = -2 (not an AVL tree!)

k

Insert and Remove can Unbalance the Tree

● Inserting node into an AVL tree can make the root’s balance +2 or -2.

● Similarly, removing a node can make root’s balance +2 or -2.

● (Why? Because inserting or removing one node changes height of at

most one of root’s subtrees by up to ±1.)

● Resulting tree may no longer be an AVL tree!

25

Insert and Remove can Unbalance the Tree

● Inserting node into an AVL tree can make the root’s balance +2 or -2.

● Similarly, removing a node can make root’s balance +2 or -2.

● (Why? Because inserting or removing one node changes height of at

most one of root’s subtrees by up to ±1.)

● Resulting tree may no longer be an AVL tree!

26

Challenge: after

insert or remove,

restore balance to

the tree…

Insert and Remove can Unbalance the Tree

● Inserting node into an AVL tree can make the root’s balance +2 or -2.

● Similarly, removing a node can make root’s balance +2 or -2.

● (Why? Because inserting or removing one node changes height of at

most one of root’s subtrees by up to ±1.)

● Resulting tree may no longer an AVL tree!

27

Challenge: after

insert or remove,

restore balance to

the tree…

while preserving

BST property!

Important Tool: Tree Rotation

● A tree rotation (left or right) changes the root of the tree

while maintaining the BST property.

28

x

y

T1 T2 T3

rotate right

Important Tool: Tree Rotation

● A tree rotation (left or right) changes the root of the tree

while maintaining the BST property.

29

x

y

T1

T2

T3

rotate right

1. Detach right

subtree from y,

making it an

“orphan”

Important Tool: Tree Rotation

● A tree rotation (left or right) changes the root of the tree

while maintaining the BST property.

30

T2

y

x

T3T1

rotate right

2. Make y new

root of tree

Important Tool: Tree Rotation

● A tree rotation (left or right) changes the root of the tree

while maintaining the BST property.

31

T2

y

x

T3T1

rotate right

3. Reattach

“orphaned” subtree

as left subtree of x.

Important Tool: Tree Rotation

● A tree rotation (left or right) changes the root of the tree

while maintaining the BST property.

32

T2

y

x

T3T1

rotate right

3. Reattach

“orphaned” subtree

as left subtree of x.

Left rotation is

simply the reverse of

these steps.

Does Rotation Preserve the BST Property?

● Before the rotation, BST property tells us that

○ x ≥ y

○ T1 ≤ y

○ T3 ≥ x

○ T2 ≥ y, ≤ x

33

x

y

T1 T2 T3

Does Rotation Preserve the BST Property?

● Before the rotation, BST property tells us that

○ x ≥ y

○ T1 ≤ y

○ T3 ≥ x

○ T2 ≥ y, ≤ x

● These inequalities are consistent with final tree as well.
34

T2

y

x

T3T1

Correcting Balance via Rotation

● Suppose after insertion, root has balance factor -2

● (For +2, do the mirror image of what follows)
35

x

h

h+2

Correcting Balance via Rotation

● Suppose after insertion, root has balance factor -2

● (For +2, do the mirror image of what follows)
36

x

h

h+2

Assume both subtrees have

AVL property, so only

violation is at root.

Correcting Balance via Rotation (Case 1)

● Suppose after insertion, root has balance factor -2

37

x

h

Assume both subtrees have

AVL property, so only

violation is at root.
y

h+1

h

h+2

Balance(y) = -1

Correcting Balance via Rotation (Case 1)

● Suppose after insertion, root has balance factor -2

38

x

h

Assume both subtrees have

AVL property, so only

violation is at root.
y

h+1

h

h+2

rotate right

Correcting Balance via Rotation (Case 1)

● Suppose after insertion, root has balance factor -2

39

x

h

Assume both subtrees have

AVL property, so only

violation is at root.

y

h+1
h

h+1

rotate right

Correcting Balance via Rotation (Case 1)

● Suppose after insertion, root has balance factor -2

40

x

h

After rotation, both subtrees

have height h+1→ root’s

balance factor is now 0.

y

h+1
h

rotate right

h+1 AVL PROPERTY

RESTORED!

Correcting Balance via Rotation (Case 1)

● Suppose after insertion, root has balance factor -2

41

x

h

After rotation, both subtrees

have height h+1→ root’s

balance factor is now 0.

y

h+1
h

rotate right

h+1 AVL PROPERTY

RESTORED!

Right rotation also restores AVL

property if both subtrees of y have

height h+1 before rebalancing, which

could happen if we remove a node

from x’s right subtree. (Final balance of

root is then +1, not 0.)

Correcting Balance via Rotation (Case 2)

● Suppose after insertion, root has balance factor -2

42

x

h

Assume both subtrees have

AVL property, so only

violation is at root.
y

h+1

h

h+2

Balance(y) = +1

Correcting Balance via Rotation (Case 2)

● Suppose after insertion, root has balance factor -2

43

x

h

Assume both subtrees have

AVL property, so only

violation is at root.
y

h+1

h

h+2

Balance(y) = +1
Right rotation alone

does not fix the

problem – makes

balance +2. (Try it!)

Correcting Balance via Rotation (Case 2a)

● Suppose after insertion, root has balance factor -2

44

x

h

Assume both subtrees have

AVL property, so only

violation is at root.
y

h

h+2 z

h-1
h

Correcting Balance via Rotation (Case 2a)

● Suppose after insertion, root has balance factor -2

45

x

h

Assume both subtrees have

AVL property, so only

violation is at root.
y

h

h+2 z

h-1
h

rotate left

Correcting Balance via Rotation (Case 2a)

● Suppose after insertion, root has balance factor -2

46

x

h

Assume both subtrees have

AVL property, so only

violation is at root.

h+2

h-1

z

h

y

h

rotate left

Correcting Balance via Rotation (Case 2a)

● Suppose after insertion, root has balance factor -2

47

x

h

Assume both subtrees have

AVL property, so only

violation is at root.

h+2

h-1

z

h

y

h

rotate left

Correcting Balance via Rotation (Case 2a)

● Suppose after insertion, root has balance factor -2

48

x

h

Assume both subtrees have

AVL property, so only

violation is at root.

h+2

z

h

h+1

NOW WE ARE IN

CASE 1 AGAIN!

Rotate x right to

restore AVL

property.

Correcting Balance via Rotation (Case 2a)

● Suppose after insertion, root has balance factor -2

49

x

h

Assume both subtrees have

AVL property, so only

violation is at root.
z

h+1

h

h+2

rotate right

Correcting Balance via Rotation (Case 2a)

● Suppose after insertion, root has balance factor -2

50

x

h

Assume both subtrees have

AVL property, so only

violation is at root.

z

h+1
h

h+1

rotate right

Correcting Balance via Rotation (Case 2a)

● Suppose after insertion, root has balance factor -2

51

x

h

After rotation, both subtrees

have height h+1→ root’s

balance factor is now 0.

z

h+1
h

h+1 AVL PROPERTY

RESTORED!

Correcting Balance via Rotation (Case 2b)

● Suppose after insertion, root has balance factor -2

52

x

h

Assume both subtrees have

AVL property, so only

violation is at root.
y

h

h+2 z

h-1
h

Correcting Balance via Rotation (Case 2b)

● Suppose after insertion, root has balance factor -2

53

x

h

Assume both subtrees have

AVL property, so only

violation is at root.
y

h

h+2 z

h-1
h

rotate left

Correcting Balance via Rotation (Case 2b)

● Suppose after insertion, root has balance factor -2

54

x

h

Assume both subtrees have

AVL property, so only

violation is at root.

h+2

z

h-1
y

h h

rotate left

Correcting Balance via Rotation (Case 2b)

● Suppose after insertion, root has balance factor -2

55

x

h

Assume both subtrees have

AVL property, so only

violation is at root.

h+2

z

h-1
y

h h

rotate left

Correcting Balance via Rotation (Case 2b)

● Suppose after insertion, root has balance factor -2

56

x

h

Assume both subtrees have

AVL property, so only

violation is at root.

h+2

z

h-1

h+1

This is not quite

Case 1, but…

rotate right

Correcting Balance via Rotation (Case 2b)

● Suppose after insertion, root has balance factor -2

57

x

h

After rotation, both subtrees

have height h+1→ root’s

balance factor is now 0.

z

h+1 h-1

h+1 A right rotation

still restores the

AVL property.

Summary of AVL Rebalancing Algorithm

● If root’s balance factor is -2

● If root.left has balance factor +1 // CASE 2

● perform left rotate on root.left

● Perform right rotate on root // CASE 1

● Else if root’s balance factor is +2, do opposite rotations,

applying Case 2 to root.right

● (If -1 ≤ balance factor ≤ 1, don’t need to do anything)
58

When Do We Rebalance?

● Inserting or removing a node x may unbalance some

subtree rooted at some ancestor y of x.

● To find y, try to rebalance subtree rooted at each

ancestor of x moving up the tree, starting with its

parent.

59

x

y

Rebalance?

When Do We Rebalance?

● Inserting or removing a node x may unbalance some

subtree rooted at some ancestor y of x.

● To find y, try to rebalance subtree rooted at each

ancestor of x moving up the tree, starting with its

parent.

60

x

y

Rebalance?

When Do We Rebalance?

● Inserting or removing a node x may unbalance some

subtree rooted at some ancestor y of x.

● To find y, try to rebalance subtree rooted at each

ancestor of x moving up the tree, starting with its

parent.

61

x

y

Rebalance?

When Do We Rebalance?

● Inserting or removing a node x may unbalance some

subtree rooted at some ancestor y of x.

● To find y, try to rebalance subtree rooted at each

ancestor of x moving up the tree, starting with its

parent.

● Question: do we have to keep checking balance all the

way to the root after rebalancing at y?

62

x

yRebalance!

When Do We Rebalance?

● Question: do we have to keep checking balance all the

way to the root after rebalancing at y?

● For insertions, can prove that we may safely stop after

first rebalancing that changes tree.

● For deletions, we must continue to check and, if

needed, rebalance all the way to the root.

● (Asymptotically, no harm in continuing up to root in

both cases – total cost is still only Θ(h)) 63

x

Cost of AVL Tree Maintenance

● As we saw in studio, maintaining height on insert/remove costs O(h)

● Rotation is O(1) operation, so check and rebalance is O(1) / level

● Hence, total cost of rebalance on insert/remove is O(h).

● Since h is Θ(log n) for an AVL tree, added cost is only O(log n).

● → All BST ops are now Θ(log n)

64

There’s More Than

One Way To Balance

a Tree…

65

An Alternative (Not Binary) Tree

● We will allow each node of a tree to hold 1, 2, or 3 keys.

● A non-leaf node with t keys has t+1 children (2, 3, or 4 children).

● Natural analog of BST property holds between root and its subtrees.

66

2

1 3

2 4

1 53

2 4 6

1 73 5

2-3-4 Trees

● A 2-3-4 tree is a tree in which each node holds 1, 2, or 3 keys as described…

● … and every path from root to bottom of the tree has same height.

67

2-3-4 Trees Are Balanced

● Claim: A 2-3-4 tree of height h has at least 2h+1 -1 keys

● Pf: if every node has 1 key (minimum possible), “same height”

property implies that tree is a complete binary tree of height h. QED

● → Every 2-3-4 tree with n keys has height O(log n).

68

Maintaining 2-3-4 Tree Properties

● As we perform insertions and deletions in a 2-3-4 tree…

● Must maintain that every path from root to bottom has same height

● This means we can’t just create a new leaf for each insertion. We

instead try to insert each new value into an existing leaf.

69

Insert 21

Maintaining 2-3-4 Tree Properties

● As we perform insertions and deletions in a 2-3-4 tree…

● Must maintain that every path from root to bottom has same height

● This means we can’t just create a new leaf for each insertion. We

instead try to insert each new value into an existing leaf.

70

Insert 21

The Problem With Insertion

● What if the leaf we want to insert into is full (has three keys)?

71

1 2 4

Insert 3

The Problem With Insertion

● What if the leaf we want to insert into is full (has three keys)?

72

1 2 3 4

Insert 3

May not

(permanently)

overload a node.

The Problem With Insertion

● What if the leaf we want to insert into is full (has three keys)?

73

1 2 4

Insert 3

3

May not create

one leaf deeper

than the rest of

the tree.

Solution: Split the Leaf

● Split overloaded node into 2 nodes; push median key up to parent

74

1 2 3 4

Insert 3

Solution: Split the Leaf

● Split overloaded node into 2 nodes; push median key up to parent

75

1 2 3 4

Insert 3

By “median”, I mean key

#2 out of 4 (in order) in

the overloaded node.

Solution: Split the Leaf

● Split overloaded node into 2 nodes; push median key up to parent

● (Moving a key to parent creates one more slot for a child pointer.)

76

3 4

Insert 3

1

…2…

What If the Parent Is Also Full?

● If moving a key to parent would overload it, recursively split parent!

77

12 13 15

Insert 9

6 7 80 1 2 19 21 23

4 10 17

What If the Parent Is Also Full?

● If moving a key to parent would overload it, recursively split parent!

78

12 13 15

Insert 9

6 7 8 90 1 2 19 21 23

4 10 17

What If the Parent Is Also Full?

● If moving a key to parent would overload it, recursively split parent!

79

12 13 15

Insert 9

6 7 8 90 1 2 19 21 23

4 10 17

What If the Parent Is Also Full?

● If moving a key to parent would overload it, recursively split parent!

80

12 13 15

Insert 9

8 90 1 2 19 21 23

4 7 10 17

6

What If the Parent Is Also Full?

● If moving a key to parent would overload it, recursively split parent!

81

12 13 15

Insert 9

8 90 1 2 19 21 23

10 17

6

4

…7…

What If the Parent Is Also Full?

● If moving a key to parent would overload it, recursively split parent!

82

12 13 15

Insert 9

8 90 1 2 19 21 23

10 17

6

4

…7…We continue splitting until

there is room in the parent

for an extra key, or we split

the root, creating a new root

of size 1.

Cost of Insertion

● Splitting is an O(1) time operation.

● We might have to split at each level of tree.

● Hence, 2-3-4 tree insertion is still worst-case Θ(log n)

83

What About Deletion?

● Deletion from a 2-3-4 tree is more complex.

● Studio 11 works out some of the details.

● Still Θ(log n).

84

What Good Is a 2-3-4 Tree?

● If your tree lives in external memory (the cloud?)…

● Can generalize 2-3-4 trees to B-trees, which work the same but store

hundreds or thousands of keys in each node.

● If you would prefer to use binary trees…

● There’s a trick to representing 2-3-4 trees as binary trees.

85

Simulating a 2-3-4 Tree with a Binary Tree

● Idea: Convert each node of a 2-3-4 tree to a little binary tree.

86

x

x y

x y z

x

y

x

y

zx

A Larger

Example

87http://faculty.cs.niu.edu/~freedman/340/340notes/340redblk.htm

Every node of 2-3-4

tree maps to one

black node with 0-2

red nodes as children

General Construction: Red-Black Trees

● A red-black tree is a binary representation of a 2-3-4 tree.

● Hence, we know that

○ Same # of black nodes on path from root to every leaf

○ Cannot have a red child of a red node.

● → red-black trees have height O(log n).

88

More on Red-Black Trees

● Red-black tree properties can be efficiently maintained

under insertion/removal of nodes.

● (Algorithms are kind of gross – see your text)

● Red-black trees are probably the most widely used

balanced binary tree structure. For example, Java

ordered sets use them.

89

Which Balanced Binary Tree Should You Use?

● AVL, red-black (=234), left-leaning red-black (=23), scapegoat tree, …

● AVL is simpler to code than other trees but rotates more often.

● Ongoing fights over which red-black-like variant is best.

● Best option: use someone else’s implementation.

● RB trees commonly found in Java, C++, and other standard libraries.

90

