Lecture 11.
How to Balance
a lree

. . . . 1
These slides include material originally prepared by Dr. Ron Cytron, Dr. Jeremy Buhler,and Dr. Steve Cole.

Announcements

e Exam 2 tomorrow
o See Piazzal/e-mall for details
o Must go to your assigned room

o Exam 3: Cornerstone apps due end of this week

e Lab 11 out this week
o Pre-lab due Tue. 4/9: rest due Fri. 4/12

Review: Worst-Case Costs for BST Operations

e Find - ©O(h) for tree of height h

e Min/Max— O(h) for tree of height h
e Insert— ©(h) for tree of height h

e Iterate — O(h) for tree of height h

e Remove — O(h) for tree of height h

How Tall Can a BST with n Nodes Be?

e Insert keys 1..n in order

How Tall Can a BST with n Nodes Be?

e Insert keys 1..n in order

Tree height Is

worst-case ©(n)

Can We Overcome
Worst-Case O(n)
Costs for Tree
Operations?

What If Our Trees Were Never Too Tall?

o Defn: a binary tree with n nodes is said to be balanced if it
has height O(log n).

o« Example: a complete binary tree with 2"-1 nodes has
height n — 1, so is balanced.

o In a balanced BST, all BST ops are worst case O(log n).

Strategy for Balancing Trees

1.

Define a structural property P that applies to only some
BSTs

Prove that BSTs satisfying property P are balanced
Make sure a trivial BST (one node) satisfies P

Show how to insert, remove while maintaining P

From the End of Lecture 10, through Today

o AVL tree — heights of left, right subtrees of every node
differ in height by at most 1

e Prove that AVL property implies balance

e Show how to maintain AVL property under insertion,
deletion

o (After that, a different approach to balanced trees!)

How do we maintain AVL property efficiently?

e Lecture 10 (AVL property)
+ Studio 10 (order stats in trees)

10

Checking the AVL Property

e To check AVL property for tree T, we will maintain height
of each subtree of T in subtree’s root.

11

Checking the AVL Property

e To check AVL property for tree T, we will maintain height
of each subtree of T in subtree’s root.

12

Checking the AVL Property

e 10 check AVL
of each su

You studied how to
maintain height (and size)

under insertion, deletion In
Studio 10, Part C.

oroperty for tree T, we will maintain height

13

Key Measurement: Balance Factor

e Forany node x, the balance factor of x is the difference
(heightofright subtree of x — height of left subtree of x)

14

Key Measurement: Balance Factor

e Forany node x, the balance factor of x is the difference
(heightofright subtree of x — height of left subtree of x)

15

Key Measurement: Balance Factor

e Forany node x, the balance factor of x is the difference
(heightof right subtree of x — height of left subtree of x)

Can compute balance
factor from subtree

heights in O(1) time.

16

Balance Factor for AVL Trees

e Every node of an AVL tree has a balance factor of either
??7?,??7?,0r??7?

17

Balance Factor for AVL Trees

e Every node of an AVL tree has a balance factor of either
-1,0,o0r +1

e (Follows because subtree heights cannot differ by > 1.)

e Question: iIf we add or remove a node to/from an AVL
tree, by how much could the balance factors of its nodes
change?

18

Inserting a Node into an AVL Tree

> h
h+1 <<

-

Before insertion, balance is 0 or +-1. Here, we show -1.

19

Inserting a Node into an AVL Tree

Insertk m——)

h+1 <<

Balance(x) = -1

-~

>

h

20

Inserting a Node into an AVL Tree

h+1 <<

Balance(x) = 7?77

-~

>

h

21

Inserting a Node into an AVL Tree

Balance(x) = 0 (still an AVL tree)

— ~

> h
h+1 <<

Inserting a Node into an AVL Tree

h+1 <<

Balance(x) = 7?77

-~

>

h

23

Inserting a Node into an AVL Tree

Balance(x) = -2 (not an AVL tree!)

— ~

> h
h+1 <<

Insert and Remove can Unbalance the Tree

e Inserting node into an AVL tree can make the root’s balance +2 or -2.
e Similarly, removing a node can make root’s balance +2 or -2.

e (Why? Because inserting or removing one node changes height of at
mostone of root’s subtrees by up to £1.)

o Resulting tree may no longer be an AVL tree!

25

Insert and Remove can Unbalance the Tree
e Inserting node into an AVL tree can r
Challenge: after
Insert or remove,

e (Why? Because inserting or remo restore balance to
most one of root’s subtrees by up the tree. ..

e Similarly, removing a node can me

« Resulting tree may no lo

26

Thousands of

s Jedi and 2 Sith &all Unbalance the Tree

L tree can g

J Or remov
es by up

What did you think YRgleRe]
"hring halance”

meant?

27

Important Tool: Tree Rotation

o Atree rotation (left or right) changes the root of the tree
while maintaining the BST property.

rotate right

28

Important Tool: Tree Rotation

o Atree rotation (left or right) changes the root of the tree
while maintaining the BST property.

1. Detach right
subtree fromy,
making it an
“‘orphan”

A

rotate right

29

Important Tool: Tree Rotation

o Atree rotation (left or right) changes the root of the tree
while maintaining the BST property.

O

2. Make y new
root of tree

A

rotate right

30

Important Tool: Tree Rotation

o Atree rotation (left or right) changes the root of the tree
while maintaining the BST property.

3. Reattach
“‘orphaned” subtree
as left subtree of x.

rotate right

31

Important Tool: Tree Rotation

e Atreerotatig
while maints
Left rotation Is

simply the reverse of

3. Reattach
“orphaned” subtree
as left subtree of x.

these steps.

rotate right

oot of the tree

32

Does Rotation Preserve the BST Property?

o Before the rotation, BST property tells us that

o X2V
o Ty =Yy
o 42

33

Does Rotation Preserve the BST Property?

o Before the rotation, BST property tells us that

o X2V

o Ty =y

o Tg2

o To2Y, =X

o These inequalities are consistent with final tree as well.
34

Correcting Balance via Rotation

e Suppose after insertion, root has balance factor -2

e (For +2, do the mirror image of what follows)

35

Correcting Balance via Rotation

e Suppose after insertion, root has balance factor -2

Assume both subtrees have
AVL property, so only
violation is at root.

e (For +2, do the mirror image of what follows)
36

Correcting Balance via Rotation (Case 1)

e Suppose after insertion, root has balance factor -2

Assume both subtrees have
AVL property, so only

Balance(y) = -1 C violation is at root.

h+2 =<

37

Correcting Balance via Rotation (Case 1)

e Suppose after insertion, root has balance factor -2

Assume both subtrees have
AVL property, so only
— violation is at root.

h+2 =< /\

rotate right 38

Correctin

g Balance via Rotation (Case 1)

e Suppose after insertion, root has balance factor -2

h+1 =<

/\ Assume both subtrees have

AVL property, so only
— violation is at root.

A A

rotate right 39

Correctin

g Balance via Rotation (Case 1)

e Suppose after insertion, root has balance factor -2

h+1 =<

After rotation, both subtrees
have height h+1 = root’s
- balance factor is now O.

AVL PROPERTY
RESTORED!

rotate right 40

Right rotation also restores AVL
Correctin g Balance vi property if both subtrees of y have
height h+1 before rebalancing, which
could happen if we remove a node
from X’s right subtree. (Final balance of
root is then +1, not 0.)

e Suppose after insertion, root

have height h+1 2 root’s
balance factor is now O.

AVL PROPERTY
RESTORED!

h+1 <

rotate right a1

Correcting Balance via Rotation (Case 2)

e Suppose after insertion, root has balance factor -2

Assume both subtrees have
AVL property, so only

Balance(y) = +1 C violation is at root.

h+2 =<

42

Correcting Balance via Rotation (Case 2)

e Suppose after insertion, root has balance factor -2

hssume both subtrees have
AVL property, so only

Right rotation alone violation is at root.
does not fix the
h+2 =< problem — makes
‘ balance +2. (Try itl)

Balance(y) = +1

43

Correcting Balance via Rotation (Case 2a)

e Suppose after insertion, root has balance factor -2

Assume both subtrees have
AVL property, so only
— violation is at root.

h+2 =<

a4

Correcting Balance via Rotation (Case 2a)

e Suppose after insertion, root has balance factor -2

Assume both subtrees have
AVL property, so only
— violation is at root.

h+2 =<

A

rotate left 45

Correcting Balance via Rotation (Case 2a)

e Suppose after insertion, root has balance factor -2

Assume both subtrees have
AVL property, so only
— violation is at root.

h+2 =<

A

rotate left 46

Correcting Balance via Rotation (Case 2a)

e Suppose after insertion, root has balance factor -2

Assume both subtrees have
AVL property, so only
— violation is at root.

h+2 =<

rotate left 47

Correcting Balance via Rotation (Case 2a)

e Suppose after insertion, root has balance factor -2

Assume both subtrees have
AVL property, so only
— violation is at root.

NOW WE ARE IN

h+2 =< CASE 1 AGAIN!

Rotate x rightto
restore AVL

property.

48

Correctin

g Balance via Rotation (Case 2a)

e Suppose after insertion, root has balance factor -2

h+2 =<

Assume both subtrees have
AVL property, so only
— violation is at root.

A

rotate right 49

Correcting Balance via Rotation (Case 2a)

e Suppose after insertion, root has balance factor -2

/\ Assume both subtrees have

AVL property, so only
— violation is at root.

h+1 =<
- /\

rotate right

50

Correctin

g Balance via Rotation (Case 2a)

e Suppose after insertion, root has balance factor -2

h+1l =<

After rotation, both subtrees
have height h+1 = root’s
- balance factor is now O.

AVL PROPERTY
RESTORED!

51

Correcting Balance via Rotation (Case 2b)

e Suppose after insertion, root has balance factor -2

Assume both subtrees have
AVL property, so only
— violation is at root.

h+2 =<

52

Correcting Balance via Rotation (Case 2b)

e Suppose after insertion, root has balance factor -2

Assume both subtrees have
AVL property, so only
— violation is at root.

h+2 =<

A

rotate left 53

Correcting Balance via Rotation (Case 2b)

e Suppose after insertion, root has balance factor -2

Assume both subtrees have
AVL property, so only
— violation is at root.

h+2 =<

A

rotate left 54

Correcting Balance via Rotation (Case 2b)

e Suppose after insertion, root has balance factor -2

Assume both subtrees have
AVL property, so only
— violation is at root.

h+2 =<

rotate left 55

Correcting Balance via Rotation (Case 2b)

e Suppose after insertion, root has balance factor -2

/\ Assume both subtrees have

AVL property, so only
— violation is at root.

Thisis notquite
h+2 =< Case 1, but...

rotate right 56

Correctin

g Balance via Rotation (Case 2b)

e Suppose after insertion, root has balance factor -2

h+1 =<

After rotation, both subtrees
have height h+1 = root’s
- balance factor is now O.

A rightrotation
still restores the

— AVL property.

o7

Summary of AVL Rebalancing Algorithm

e |froot’s balance factoris -2

o If root.left has balance factor +1 /[CASE 2
o perform left rotate on root.left
o Perform right rotate on root /[CASE 1

e Elseif root’s balance factoris +2, do opposite rotations,
applying Case 2 to root.right

e (If-71 < balance factor< 1, don’t need to do anything)

When Do We Rebalance?

e Inserting or removing a node x may unbalance some
subtree rooted at some ancestory of x.

e Tofindy, try to rebalance subtree rooted at each

ancestor of x moving up the tree, starting with its
parent.

Rebalance?

59

When Do We Rebalance?

e Inserting or removing a node x may unbalance some
subtree rooted at some ancestory of x.

e Tofindy, try to rebalance subtree rooted at each
ancestor of x moving up the tree, starting with its
parent.

Rebalance?

60

When Do We Rebalance?

e Inserting or removing a node x may unbalance some
subtree rooted at some ancestory of x.

e Tofindy, try to rebalance subtree rooted at each
ancestor of x moving up the tree, starting with its
parent.

Rebalance?

61

When Do We Rebalance?

e Inserting or removing a node x may unbalance some
subtree rooted at some ancestory of x.

e Tofindy, try to rebalance subtree rooted at each
ancestor of x moving up the tree, starting with its
parent.

Rebalance!

e Question: do we have to keep checking balance all the
way to the root after rebalancing at y?

62

When Do We Rebalance?

Question: do we have to keep checking balance all the
way to the root after rebalancing at y?

Forinsertions, can prove that we may safely stop after
first rebalancing that changes tree.

For deletions, we must continue to check and, if
needed, rebalance all the way to the root.

(Asymptotically, no harm in continuing up to root in
both cases — total cost s still only ©(h))

63

Cost of AVL Tree Maintenance

e As we saw in studio, maintaining height on insert/remove costs O(h)
e Rotationis O(1) operation, so check and rebalanceis O(1) / level

e Hence, total cost of rebalance on insert/remove is O(h).

e Since his O(log n) for an AVL tree, added costis only O(log n).

e 2> All BST opsare now ©(logn)

64

There’s More Than
One Way To Balance
aTree...

An Alternative (Not Binary) Tree

e Wewill allow each node of a treeto hold 1, 2, or 3 keys.

e A non-leaf node with t keys has t+1 children (2, 3, or 4 children).

2 2 4 2 46

e Natural analog of BST property holds between root and its subtrees.

66

2-3-4 Trees

e A 2-3-4tree is atree in which each node holds 1, 2, or 3 keys as described...

... and every path from root to bottom of the tree has same height.

10 12 14

/N T

N ,f’"“\g(

11 13

15 16

67

2-3-4 Trees Are Balanced

e Claim: A 2-3-4 tree of height h has at least 2"*1-1 keys

e Pf:if every node has 1 key (minimum possible), “same height”
property implies that tree is a complete binary tree of height h. QED

e > Every 2-3-4 tree with n keys has height O(log n).

68

Maintaining 2-3-4 Tree Properties

e As we perform insertions and deletions in a 2-3-4 tree...
e Must maintain that every path from root to bottom has same height

e This means we can'tjust create a new leaf for each insertion. We
instead try to insert each new value into an existing leaf.

Insert 21
m—)

69

Maintaining 2-3-4 Tree Properties

As we perform insertions and deletions in a 2-3-4 tree...
Must maintain that every path from root to bottom has same height

This means we can'’t just create a new leaf for each insertion. We
instead try to insert each new value into an existing leaf.

Insert 21
m—)

——

21 Jp5 30

.~

The Problem With Insertion

e Whatif the leaf we want to insert into is full (has three keys)?

Insert 3 \

124

The Problem With Insertion

e Whatif the leaf we want to insert into is full (has three keys)?

Insert 3 \

May not
1234 x (permanently)

overload a node.

72

The Problem With Insertion

e Whatif the leaf we want to insert into is full (has three keys)?

Insert 3 \

124 May not create
x one leaf deeper
3 than the rest of

the tree.

73

Solution: Split the Leaf

e Split overloaded node into 2 nodes; push median key up to parent

AN

1234

Insert 3

Solution: Split the Leaf

e Split overloaded node into 2 nodes; push median key up to parent

\ By “median”, | mean key

#2 out of 4 (in order) in
1234 the overloaded node.

Insert 3

75

Solution: Split the Leaf
e Split overloaded node into 2 nodes; push median key up to parent

Insert 3

/2

1 34

e (Moving a key to parent creates one more slot for a child pointer.)

What If the Parent Is Also Full?

e If moving a key to parent would overload it, recursively split parent!

Insert 9

\

(41017

012

N\

6738

1213 15

19 21 23

77

What If the Parent Is Also Full?

e If moving a key to parent would overload it, recursively split parent!

Insert 9

\

(41017

N\

012

6789

1213 15

19 21 23

78

What If the Parent Is Also Full?

e If moving a key to parent would overload it, recursively split parent!

Insert 9

\

(41017

N\

012

6789

1213 15

19 21 23

79

What If the Parent Is Also Full?

e If moving a key to parent would overload it, recursively split parent!

Insert 9

471017

N

012

89

1213 15

19 21 23

80

What If the Parent Is Also Full?

e If moving a key to parent would overload it, recursively split parent!

Insert 9

[

S

1017 |

|

012

89

1213 15

19 21 23

81

What If the Parent Is Also Full?

We continue splitting until
there is room in the parent

for an extra key, or we split
the root, creating a new root
of size 1.

82

Cost of Insertion

o Splitting is an O(1) time operation.
o We might have to split at each level of tree.

e Hence, 2-3-4 tree insertion is still worst-case O(log n)

83

What About Deletion?

e Deletion from a 2-3-4 tree is more complex.
e Studio 11 works out some of the details.

o Still ©(log n).

84

What Good Is a 2-3-4 Tree?

e Ifyourtree lives in external memory (the cloud?)...

e Can generalize 2-3-4 trees to B-trees, which work the same but store
hundreds or thousands of keys in each node.

e If you would prefer to use binary trees...

e There’s a trick to representing 2-3-4 trees as binary trees.

85

Simulating a 2-3-4 Tree with a Binary Tree

e Idea: Convert each node of a 2-3-4 tree to a little binary tree.

X — @
Xy —) Qj@
5 = &

A Larger
Example

Every node of 2-3-4
tree maps to one
black node with 0-2
red nodes as children

16

27 | 38

16 | 25

36

http://faculty.cs.niu.edu/~freedman/340/340notes/340redblk.htm

53

70

41

46 59 | 60 | 65

53

73

75

87

General Construction: Red-Black Trees

o Ared-black tree is a binary representation of a 2-3-4 tree.

e Hence, we know that
- Same # of black nodes on path from root to every leaf
- Cannot have a red child of a red node.

o —> red-black trees have height O(log n).

88

More on Red-Black Trees

o Red-black tree properties can be efficiently maintained
under insertion/removal of nodes.

e (Algorithms are kind of gross — see your text)

o Red-black trees are probably the most widely used
balanced binary tree structure. For example, Java
ordered sets use them.

89

Which Balanced Binary Tree Should You Use?

AVL, red-black (=234), left-leaning red-black (=23), scapegoat tree, ...

AVL is simpler to code than other trees but rotates more often.
Ongoing fights over which red-black-like variant is best.
Best option: use someone else’s implementation.

RB trees commonly found in Java, C++, and other standard libraries.

90

