
Lecture 11:  

How to Balance 

a Tree

1
These slides include material originally prepared by Dr. Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole.



Announcements

● Exam 2 tomorrow
○ See Piazza/e-mail for details

○ Must go to your assigned room

● Exam 3: Cornerstone apps due end of this week

● Lab 11 out this week
○ Pre-lab due Tue. 4/9; rest due Fri. 4/12
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Review: Worst-Case Costs for BST Operations

● Find – Θ(h) for tree of height h

● Min/Max – Θ(h) for tree of height h

● Insert – Θ(h) for tree of height h

● Iterate – Θ(h) for tree of height h

● Remove – Θ(h) for tree of height h
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How Tall Can a BST with n Nodes Be?

● Insert keys 1..n in order
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How Tall Can a BST with n Nodes Be?

● Insert keys 1..n in order

5

1

2

3

n

…
Tree height is 

worst-case Θ(n)



Can We Overcome 

Worst-Case Θ(n) 

Costs for Tree 

Operations?
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What If Our Trees Were Never Too Tall?

● Defn: a binary tree with n nodes is said to be balanced if it 

has height O(log n).

● Example: a complete binary tree with 2n-1 nodes has 

height n – 1, so is balanced.

● In a balanced BST, all BST ops are worst case O(log n).
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Strategy for Balancing Trees

1. Define a structural property P that applies to only some

BSTs

2. Prove that BSTs satisfying property P are balanced

3. Make sure a trivial BST (one node) satisfies P

4. Show how to insert, remove while maintaining P
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From the End of Lecture 10, through Today

● AVL tree – heights of left, right subtrees of every node 

differ in height by at most 1

● Prove that AVL property implies balance

● Show how to maintain AVL property under insertion, 

deletion

● (After that, a different approach to balanced trees!) 9



How do we maintain AVL property efficiently?

● Lecture 10 (AVL property) 

+ Studio 10 (order stats in trees)
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Checking the AVL Property

● To check AVL property for tree T, we will maintain height 

of each subtree of T in subtree’s root.
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Checking the AVL Property

● To check AVL property for tree T, we will maintain height 

of each subtree of T in subtree’s root.
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Checking the AVL Property

● To check AVL property for tree T, we will maintain height 

of each subtree of T in subtree’s root.
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Key Measurement: Balance Factor

● For any node x, the balance factor of x is the difference

(height of right subtree of x – height of left subtree of x)

14

10

7 13

16

14

5 9

62

11

0 0 0

0 01 1

2 2

3



Key Measurement: Balance Factor

● For any node x, the balance factor of x is the difference

(height of right subtree of x – height of left subtree of x)
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Key Measurement: Balance Factor

● For any node x, the balance factor of x is the difference

(height of right subtree of x – height of left subtree of x)
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Balance Factor for AVL Trees

● Every node of an AVL tree has a  balance factor of either

???, ???, or ???
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Balance Factor for AVL Trees

● Every node of an AVL tree has a  balance factor of either

-1, 0, or +1

● (Follows because subtree heights cannot differ by > 1.)

● Question: if we add or remove a node to/from an AVL 

tree, by how much could the balance factors of its nodes 

change?
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Inserting a Node into an AVL Tree
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Inserting a Node into an AVL Tree
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Inserting a Node into an AVL Tree
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Inserting a Node into an AVL Tree
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Inserting a Node into an AVL Tree
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Inserting a Node into an AVL Tree
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Insert and Remove can Unbalance the Tree

● Inserting node into an AVL tree can make the root’s balance +2 or -2.

● Similarly, removing a node can make root’s balance +2 or -2.

● (Why? Because inserting or removing one node changes height of at 

most one of root’s subtrees by up to ±1.)

● Resulting tree may no longer be an AVL tree!
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Insert and Remove can Unbalance the Tree

● Inserting node into an AVL tree can make the root’s balance +2 or -2.

● Similarly, removing a node can make root’s balance +2 or -2.

● (Why? Because inserting or removing one node changes height of at 

most one of root’s subtrees by up to ±1.)

● Resulting tree may no longer be an AVL tree!
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Insert and Remove can Unbalance the Tree

● Inserting node into an AVL tree can make the root’s balance +2 or -2.

● Similarly, removing a node can make root’s balance +2 or -2.

● (Why? Because inserting or removing one node changes height of at 

most one of root’s subtrees by up to ±1.)

● Resulting tree may no longer an AVL tree!

27

Challenge: after 

insert or remove, 

restore balance to 

the tree…

while preserving 

BST property!



Important Tool: Tree Rotation

● A tree rotation (left or right) changes the root of the tree 

while maintaining the BST property.
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Important Tool: Tree Rotation

● A tree rotation (left or right) changes the root of the tree 

while maintaining the BST property.
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Important Tool: Tree Rotation

● A tree rotation (left or right) changes the root of the tree 

while maintaining the BST property.

30

T2

y

x

T3T1

rotate right

2. Make y new 

root of tree



Important Tool: Tree Rotation

● A tree rotation (left or right) changes the root of the tree 

while maintaining the BST property.
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Important Tool: Tree Rotation

● A tree rotation (left or right) changes the root of the tree 

while maintaining the BST property.
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Does Rotation Preserve the BST Property?

● Before the rotation, BST property tells us that

○ x ≥ y

○ T1 ≤ y

○ T3 ≥ x

○ T2 ≥ y, ≤ x

33
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Does Rotation Preserve the BST Property?

● Before the rotation, BST property tells us that

○ x ≥ y

○ T1 ≤ y

○ T3 ≥ x

○ T2 ≥ y, ≤ x

● These inequalities are consistent with final tree as well.
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Correcting Balance via Rotation

● Suppose after insertion, root has balance factor -2

● (For +2, do the mirror image of what follows)
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Correcting Balance via Rotation

● Suppose after insertion, root has balance factor -2

● (For +2, do the mirror image of what follows)
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Correcting Balance via Rotation (Case 1)

● Suppose after insertion, root has balance factor -2
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Correcting Balance via Rotation (Case 1)

● Suppose after insertion, root has balance factor -2
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Correcting Balance via Rotation (Case 1)

● Suppose after insertion, root has balance factor -2
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Correcting Balance via Rotation (Case 1)

● Suppose after insertion, root has balance factor -2
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Correcting Balance via Rotation (Case 1)

● Suppose after insertion, root has balance factor -2
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Correcting Balance via Rotation (Case 2)

● Suppose after insertion, root has balance factor -2
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Correcting Balance via Rotation (Case 2)

● Suppose after insertion, root has balance factor -2

43

x

h

Assume both subtrees have 

AVL property, so only 

violation is at root.
y

h+1

h

h+2

Balance(y) = +1
Right rotation alone 

does not fix the 

problem – makes 

balance +2.  (Try it!)



Correcting Balance via Rotation (Case 2a)

● Suppose after insertion, root has balance factor -2
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Correcting Balance via Rotation (Case 2a)

● Suppose after insertion, root has balance factor -2
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Correcting Balance via Rotation (Case 2a)

● Suppose after insertion, root has balance factor -2
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Correcting Balance via Rotation (Case 2a)

● Suppose after insertion, root has balance factor -2
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Correcting Balance via Rotation (Case 2a)

● Suppose after insertion, root has balance factor -2
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Correcting Balance via Rotation (Case 2a)

● Suppose after insertion, root has balance factor -2
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Correcting Balance via Rotation (Case 2a)

● Suppose after insertion, root has balance factor -2
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Correcting Balance via Rotation (Case 2a)

● Suppose after insertion, root has balance factor -2
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Correcting Balance via Rotation (Case 2b)

● Suppose after insertion, root has balance factor -2
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Correcting Balance via Rotation (Case 2b)

● Suppose after insertion, root has balance factor -2
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Correcting Balance via Rotation (Case 2b)

● Suppose after insertion, root has balance factor -2
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Correcting Balance via Rotation (Case 2b)

● Suppose after insertion, root has balance factor -2
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Correcting Balance via Rotation (Case 2b)

● Suppose after insertion, root has balance factor -2
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Correcting Balance via Rotation (Case 2b)

● Suppose after insertion, root has balance factor -2
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Summary of AVL Rebalancing Algorithm

● If root’s balance factor is -2

● If root.left has balance factor +1          // CASE 2

● perform left rotate on root.left

● Perform right rotate on root                 // CASE 1

● Else if root’s balance factor is +2, do opposite rotations,            

applying Case 2 to root.right

● (If -1 ≤ balance factor ≤ 1, don’t need to do anything)
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When Do We Rebalance?

● Inserting or removing a node x may unbalance some 

subtree rooted at some ancestor y of x.

● To find y, try to rebalance subtree rooted at each 

ancestor of x moving up the tree, starting with its 

parent.

59
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When Do We Rebalance?

● Inserting or removing a node x may unbalance some 

subtree rooted at some ancestor y of x.

● To find y, try to rebalance subtree rooted at each 

ancestor of x moving up the tree, starting with its 

parent.
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When Do We Rebalance?

● Inserting or removing a node x may unbalance some 

subtree rooted at some ancestor y of x.

● To find y, try to rebalance subtree rooted at each 

ancestor of x moving up the tree, starting with its 

parent.
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When Do We Rebalance?

● Inserting or removing a node x may unbalance some 

subtree rooted at some ancestor y of x.

● To find y, try to rebalance subtree rooted at each 

ancestor of x moving up the tree, starting with its 

parent.

● Question: do we have to keep checking balance all the 

way to the root after rebalancing at y?
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When Do We Rebalance?

● Question: do we have to keep checking balance all the 

way to the root after rebalancing at y?

● For insertions, can prove that we may safely stop after 

first rebalancing that changes tree.

● For deletions, we must continue to check and, if 

needed, rebalance all the way to the root.

● (Asymptotically, no harm in continuing up to root in 

both cases – total cost is still only Θ(h) ) 63
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Cost of AVL Tree Maintenance

● As we saw in studio, maintaining height on insert/remove costs O(h)

● Rotation is O(1) operation, so check and rebalance is O(1) / level

● Hence, total cost of rebalance on insert/remove is O(h).

● Since h is Θ(log n) for an AVL tree, added cost is only O(log n).

● → All BST ops are now Θ(log n)
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There’s More Than 

One Way To Balance 

a Tree…
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An Alternative (Not Binary) Tree

● We will allow each node of a tree to hold 1, 2, or 3 keys.

● A non-leaf node with t keys has t+1 children (2, 3, or 4 children).

● Natural analog of BST property holds between root and its subtrees.
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2-3-4 Trees

● A 2-3-4 tree is a tree in which each node holds 1, 2, or 3 keys as described…

● … and every path from root to bottom of the tree has same height. 
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2-3-4 Trees Are Balanced

● Claim: A 2-3-4 tree of height h has at least 2h+1 -1 keys

● Pf: if every node has 1 key (minimum possible), “same height” 

property implies that tree is a complete binary tree of height h.  QED

● → Every 2-3-4 tree with n keys has height O(log n). 
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Maintaining 2-3-4 Tree Properties

● As we perform insertions and deletions in a 2-3-4 tree…

● Must maintain that every path from root to bottom has same height

● This means we can’t just create a new leaf for each insertion.  We 

instead try to insert each new value into an existing leaf.

69
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Maintaining 2-3-4 Tree Properties

● As we perform insertions and deletions in a 2-3-4 tree…

● Must maintain that every path from root to bottom has same height

● This means we can’t just create a new leaf for each insertion.  We 

instead try to insert each new value into an existing leaf.
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The Problem With Insertion

● What if the leaf we want to insert into is full (has three keys)?
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The Problem With Insertion

● What if the leaf we want to insert into is full (has three keys)?
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The Problem With Insertion

● What if the leaf we want to insert into is full (has three keys)?
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Solution: Split the Leaf

● Split overloaded node into 2 nodes; push median key up to parent

74

1 2 3 4

Insert 3



Solution: Split the Leaf

● Split overloaded node into 2 nodes; push median key up to parent
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Solution: Split the Leaf

● Split overloaded node into 2 nodes; push median key up to parent

● (Moving a key to parent creates one more slot for a child pointer.)
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What If the Parent Is Also Full?

● If moving a key to parent would overload it, recursively split parent!
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What If the Parent Is Also Full?

● If moving a key to parent would overload it, recursively split parent!
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What If the Parent Is Also Full?

● If moving a key to parent would overload it, recursively split parent!
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What If the Parent Is Also Full?

● If moving a key to parent would overload it, recursively split parent!
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What If the Parent Is Also Full?

● If moving a key to parent would overload it, recursively split parent!
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What If the Parent Is Also Full?

● If moving a key to parent would overload it, recursively split parent!
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Cost of Insertion

● Splitting is an O(1) time operation.

● We might have to split at each level of tree.

● Hence, 2-3-4 tree insertion is still worst-case Θ(log n)
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What About Deletion?

● Deletion from a 2-3-4 tree is more complex.

● Studio 11 works out some of the details.

● Still Θ(log n).
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What Good Is a 2-3-4 Tree?

● If your tree lives in external memory (the cloud?)…

● Can generalize 2-3-4 trees to B-trees, which work the same but store 

hundreds or thousands of keys in each node.

● If you would prefer to use binary trees…

● There’s a trick to representing 2-3-4 trees as binary trees.
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Simulating a 2-3-4 Tree with a Binary Tree

● Idea: Convert each node of a 2-3-4 tree to a little binary tree.
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A Larger 

Example

87http://faculty.cs.niu.edu/~freedman/340/340notes/340redblk.htm

Every node of 2-3-4 
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General Construction: Red-Black Trees

● A red-black tree is a binary representation of a 2-3-4 tree.

● Hence, we know that

○ Same # of black nodes on path from root to every leaf

○ Cannot have a red child of a red node.

● → red-black trees have height O(log n).
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More on Red-Black Trees

● Red-black tree properties can be efficiently maintained 

under insertion/removal of nodes.

● (Algorithms are kind of gross – see your text)

● Red-black trees are probably the most widely used 

balanced binary tree structure.  For example, Java 

ordered sets use them.
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Which Balanced Binary Tree Should You Use?

● AVL, red-black (=234), left-leaning red-black (=23), scapegoat tree, …

● AVL is simpler to code than other trees but rotates more often.

● Ongoing fights over which red-black-like variant is best.

● Best option: use someone else’s implementation.

● RB trees commonly found in Java, C++, and other standard libraries.
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