Lecture 11: How to Balance a Tree

1

These slides include material originally prepared by Dr. Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole.

Announcements

- Exam 2 tomorrow
	- See Piazza/e-mail for details
	- *Must* go to your assigned room
- Exam 3: Cornerstone apps due end of this week
- Lab 11 out this week
	- Pre-lab due **Tue. 4/9**; rest due **Fri. 4/12**

Review: Worst-Case Costs for BST Operations

- Find $\Theta(h)$ for tree of height h
- Min/Max $\Theta(h)$ for tree of height h
- \bullet Insert $\Theta(h)$ for tree of height h
- \bullet Iterate $\Theta(h)$ for tree of height h
- Remove $-\Theta(h)$ for tree of height h

How Tall Can a BST with n Nodes Be?

• Insert keys 1..n in order

How Tall Can a BST with n Nodes Be?

• Insert keys 1..n in order

Can We Overcome Worst-Case Θ(n) Costs for Tree Operations?

What If Our Trees Were Never Too Tall?

- Defn: a binary tree with n nodes is said to be balanced if it has height O(log n).
- Example: a complete binary tree with 2ⁿ-1 nodes has height $n - 1$, so is balanced.
- In a balanced BST, all BST ops are worst case O(log n).

Strategy for Balancing Trees

- 1. Define a structural property P that applies to only *some* **BSTs**
- 2. Prove that BSTs satisfying property P are balanced
- 3. Make sure a trivial BST (one node) satisfies P
- 4. Show how to insert, remove while maintaining P

From the End of Lecture 10, through Today

- AVL tree heights of left, right subtrees of every node differ in height by at most 1
- Prove that AVL property implies balance
- Show how to maintain AVL property under insertion, deletion

(After that, a different approach to balanced trees!) $\qquad \qquad$ 9

How do we maintain AVL property efficiently?

• Lecture 10 (AVL property)

+ Studio 10 (order stats in trees)

Checking the AVL Property

• To check AVL property for tree T, we will maintain height of each subtree of T in subtree's root.

Checking the AVL Property

• To check AVL property for tree T, we will maintain height of each subtree of T in subtree's root.

Checking the AVL Property

 $\begin{pmatrix} 2 \end{pmatrix}$ 0 (6

• To check AVL property for tree T, we will maintain height of each sub

> You studied how to 7 13 **2 2** under insertion, deletion in **1 0 0 1** maintain height (and size) Studio 10, Part C.

0 b 0 c 14 d 0 c 14 d

16

14

Key Measurement: Balance Factor

● For any node x, the **balance factor** of x is the difference **(height of right subtree of x – height of left subtree of x)**

Key Measurement: Balance Factor

● For any node x, the **balance factor** of x is the difference **(height of right subtree of x – height of left subtree of x)**

Key Measurement: Balance Factor

● For any node x, the **balance factor** of x is the difference **(height of right subtree of x – height of left subtree of x)**

Balance Factor for AVL Trees

● Every node of an AVL tree has a balance factor of either **???, ???, or ???**

Balance Factor for AVL Trees

- Every node of an AVL tree has a balance factor of either **-1, 0, or +1**
- (Follows because subtree heights cannot differ by > 1 .)
- **Question**: if we add or remove a node to/from an AVL tree, by how much could the balance factors of its nodes change?

Before insertion, balance is 0 or +-1. Here, we show -1.

Insert and Remove can Unbalance the Tree

- Inserting node into an AVL tree can make the root's balance +2 or -2.
- Similarly, removing a node can make root's balance +2 or -2.
- (Why? Because inserting or removing one node changes height of **at most one** of root's subtrees by **up to ±1**.)

• Resulting tree may no longer be an AVL tree!

Insert and Remove can Unbalance the Tree

- Inserting node into an AVL tree can *r*
- Similarly, removing a node can make
- (Why? Because inserting or remov **most one** of root's subtrees by up

Challenge: after insert or remove, restore balance to the tree…

• Resulting tree may no lo

Thousands of Ins Jedi and 2 Sith can Unbalance the Tree

L tree can *i* ● Similarly, removing a node can make root's balance +2 or -2. insert or remove, **e** a series in the state of $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ or removing the state balance to **and is subtrace in the substrace in the substrace in the Challenge**: after the tree…

What did you think y no lot "bring balance" meant?

while preserving BST property!

• A **tree rotation** (left or right) changes the root of the tree while maintaining the BST property.

• A **tree rotation** (left or right) changes the root of the tree while maintaining the BST property.

• A **tree rotation** (left or right) changes the root of the tree while maintaining the BST property.

• A **tree rotation** (left or right) changes the root of the tree while maintaining the BST property.

rotate right

31

while maintal y these steps. 3. **Reattach** "orphaned" subtree as left subtree of x.

Left rotation is simply the reverse of

T2 T1 T1 T₂ **T**₂ **T**₃

rotate right

• A **tree rotation is a change of the tree**

Does Rotation Preserve the BST Property?

• Before the rotation, BST property tells us that

Does Rotation Preserve the BST Property?

• Before the rotation, BST property tells us that

• These inequalities are consistent with final tree as well.

Correcting Balance via Rotation

• Suppose after insertion, root has balance factor -2

● *(For +2, do the mirror image of what follows)*

Correcting Balance via Rotation

• Suppose after insertion, root has balance factor -2

● *(For +2, do the mirror image of what follows)*

• Suppose after insertion, root has balance factor -2

Assume both subtrees have AVL property, so only violation is at root.

• Suppose after insertion, root has balance factor -2

After rotation, both subtrees have height $h+1 \rightarrow root's$ *balance factor is now 0.*

RESTORED!

rotate right

Correcting Balance via

Suppose after insertion, root

h+1 ^h

Right rotation also restores AVL property if **both** subtrees of y have height h+1 before rebalancing, which could happen if we **remove** a node from x's right subtree. (*Final balance of root is then +1, not 0.*)

> *have height* $h+1 \rightarrow root's$ *balance factor is now 0.*

h+1 **AVL PROPERTY RESTORED!**

x

y

h

• Suppose after insertion, root has balance factor -2

Assume both subtrees have AVL property, so only violation is at root.

> **NOW WE ARE IN CASE 1 AGAIN! Rotate x right to restore AVL property.**

• Suppose after insertion, root has balance factor -2

Assume both subtrees have AVL property, so only violation is at root.

rotate right

• Suppose after insertion, root has balance factor -2

After rotation, both subtrees have height $h+1 \rightarrow root's$ *balance factor is now 0.*

RESTORED!

• Suppose after insertion, root has balance factor -2

Assume both subtrees have AVL property, so only violation is at root.

> **This is not quite Case 1, but…**

rotate right

• Suppose after insertion, root has balance factor -2

After rotation, both subtrees have height $h+1 \rightarrow root's$ *balance factor is now 0.*

> **still restores the AVL property.**

Summary of AVL Rebalancing Algorithm

- If root's balance factor is -2
- If root. Left has balance factor $+1$ // CASE 2 perform left rotate on root. left
- Perform right rotate on root // CASE 1
- \bullet Else if root's balance factor is $+2$, do opposite rotations, applying Case 2 to root.right
- *(If -1 ≤ balance factor ≤ 1, don't need to do anything)*

- Inserting or removing a node x *may* unbalance some subtree rooted at *some* ancestor y of x.
- To find y, try to rebalance subtree rooted at each ancestor of x moving up the tree, starting with its parent.

- Inserting or removing a node x *may* unbalance some subtree rooted at *some* ancestor y of x.
- To find y, try to rebalance subtree rooted at each ancestor of x moving up the tree, starting with its parent.

- Inserting or removing a node x *may* unbalance some subtree rooted at *some* ancestor y of x.
- To find y, try to rebalance subtree rooted at each ancestor of x moving up the tree, starting with its parent.

- Inserting or removing a node x *may* unbalance some subtree rooted at *some* ancestor y of x.
- To find y, try to rebalance subtree rooted at each ancestor of x moving up the tree, starting with its parent.
- **Question:** do we have to keep checking balance all the way to the root after rebalancing at y?

x

Rebalance!

- **Question**: do we have to keep checking balance all the way to the root after rebalancing at y?
- For **insertions**, can prove that we may safely stop after first rebalancing that changes tree.
- For **deletions**, we must continue to check and, if needed, rebalance all the way to the root.
- (*Asymptotically, no harm in continuing up to root in both* $cases$ – *total cost is still only* $\Theta(h)$) 63

x

Cost of AVL Tree Maintenance

- As we saw in studio, maintaining height on insert/remove costs O(h)
- Rotation is $O(1)$ operation, so check and rebalance is $O(1)$ / level
- Hence, total cost of rebalance on insert/remove is O(h).
- Since h is Θ(log n) for an AVL tree, added cost is only O(log n).
- → **All BST ops are now Θ(log n)**

There's More Than One Way To Balance a Tree…

An Alternative (Not Binary) Tree

- We will allow each node of a tree to hold 1, 2, or 3 keys.
- A non-leaf node with t keys has t+1 children (2, 3, or 4 children).

• Natural analog of BST property holds between root and its subtrees.

2-3-4 Trees

- A 2-3-4 tree is a tree in which each node holds 1, 2, or 3 keys as described...
- … and *every path from root to bottom of the tree has same height*.

2-3-4 Trees Are Balanced

- Claim: A 2-3-4 tree of height h has at least 2^{h+1} -1 keys
- **Pf**: if every node has 1 key (minimum possible), "same height" property implies that tree is a *complete binary tree* of height h. QED
- \rightarrow Every 2-3-4 tree with n keys has height **O(log n).**

Maintaining 2-3-4 Tree Properties

- As we perform insertions and deletions in a 2-3-4 tree...
- Must maintain that *every path from root to bottom has same height*
- This means we can't just create a new leaf for each insertion. We instead try to insert each new value into an existing leaf.

Maintaining 2-3-4 Tree Properties

- As we perform insertions and deletions in a 2-3-4 tree...
- Must maintain that *every path from root to bottom has same height*
- This means we can't just create a new leaf for each insertion. We instead try to insert each new value into an existing leaf.

The Problem With Insertion

• What if the leaf we want to insert into is full (has three keys)?

Insert 3

The Problem With Insertion

• What if the leaf we want to insert into is full (has three keys)?

Insert 3

The Problem With Insertion

• What if the leaf we want to insert into is full (has three keys)?

Insert 3

May not create one leaf deeper than the rest of the tree.

Solution: Split the Leaf

• Split overloaded node into 2 nodes; push median key up to parent

Insert 3

Solution: Split the Leaf

• Split overloaded node into 2 nodes; push median key up to parent

Insert 3

By "**median**", I mean key #2 out of 4 (in order) in the overloaded node.

Solution: Split the Leaf

• Split overloaded node into 2 nodes; push median key up to parent

• (Moving a key to parent creates one more slot for a child pointer.)

• If moving a key to parent would overload it, recursively split parent!

● If moving a key to parent would overload it, recursively split parent!

• If moving a key to parent would overload it, recursively split parent!

● If moving a key to parent would overload it, recursively split parent!

• If moving a key to parent would overload it, recursively split parent!

Cost of Insertion

- Splitting is an $O(1)$ time operation.
- We might have to split at each level of tree.

• Hence, 2-3-4 tree insertion is still worst-case Θ(log n)

What About Deletion?

- Deletion from a 2-3-4 tree is more complex.
- Studio 11 works out some of the details.
- \bullet Still $\Theta(\log n)$.

What Good Is a 2-3-4 Tree?

- If your tree lives in external memory (the cloud?)...
- Can generalize 2-3-4 trees to **B-trees**, which work the same but store hundreds or thousands of keys in each node.
- If you would prefer to use binary trees...
- *There's a trick to representing 2-3-4 trees as binary trees.*

Simulating a 2-3-4 Tree with a Binary Tree

● *Idea:* Convert each node of a 2-3-4 tree to a little binary tree.

A Larger Example

Every node of 2-3-4 tree maps to one **black node** with 0-2 **red nodes** as children

16

General Construction: Red-Black Trees

- A red-black tree is a binary representation of a 2-3-4 tree.
- Hence, we know that
	- Same # of black nodes on path from root to every leaf
	- Cannot have a red child of a red node.

 $\bullet \rightarrow$ red-black trees have height O(log n).

More on Red-Black Trees

• Red-black tree properties can be efficiently maintained under insertion/removal of nodes.

● *(Algorithms are kind of gross – see your text)*

● Red-black trees are probably the *most widely used balanced binary tree structure*. For example, Java ordered sets use them.

Which Balanced Binary Tree Should You Use?

- AVL, red-black (=234), left-leaning red-black (=23), scapegoat tree, ...
- AVL is simpler to code than other trees but rotates more often.
- Ongoing fights over which red-black-like variant is best.
- Best option: *use someone else's implementation*.
- RB trees commonly found in Java, C++, and other standard libraries.