Lecture 10:
Ordered
Collections with
Binary Search
Trees

These slides include material originally prepared by Dr. Ron Cytron, Dr. Jeremy Buhler,and Dr. Steve Cole.

Announcements

e Lab 11 out next week — balanced binary trees (with coding)
e Exam 2 is Wednesday, April 3rd

(@)

Same ground rules and procedures as Exam 1 (2-sided crib sheet
and nothing else, Piazza post will specify room location)

Will cover material since Exam 1 (Master Method)
s Lectures/studios 5-10 inclusive

Review on Sunday 2-5 pm in Louderman 458

Motivation — Limitations of Dictionaries

e We developed hashing to permit efficient dictionaries
o Insert()
o Remove()
> Find()
e But hash tables are unsatisfactory in two ways
1. Worst-case op performance is ©(n) (only average case is good)
2. Does not adequately represent naturally ordered collections.

Ordered Dynamic Set Operations

e Besidesthe usual dictionary operations, ordered sets support
o min/max — what is smallest/largest item in collection?

o Iterator —list collection’s items in order from smallest to largest
e See,e.g.,Java SortedSet interface

e Many data types are naturally ordered (strings, ID #'s), even if we
don’t always use this fact.

Ordered Dynamic Set Operations

e Besidesth

o mMi

JMCE “Dynamic” means that a query of the JRSREI¢LEN
set must return the correct answer at
e See e.0 any point during a sequence of
Insertions and deletions.

e Manyde 2N if we

don’t alway

Candidate Implementations?

o Sorted Array
- ©O(log n) find, O(1) min/max, O(1) iteration/item
- ©O(n) insert/remove

e Sorted List

- Much like array, except for ©(n) find

e (Hash table does not support ordering — must iterate

through all items to find min/max or next item in order)

What We Would Like from Our Ordered Sets

e Sub-linear time insert/remove/find

o (what does sub-linear mean again?)

What We Would Like from Our Ordered Sets

e Sub-linear time insert/remove/find

o (what does sub-linear mean again?)
e Sub-linear time min/max
e Iterationin sub-lineartime per element

e Alltimes worst-case (unlike a hash table)

How We’'ll Get It

e New data structure—binary search tree (BST)
e Cando all operations in time proportional to height of tree
e But height isn’t necessarily sub-linear in size (unlike a heap)

e So we'll consider how to force BSTs to have small height

Binary Trees, Revisited

e A BST is atype of binary tree.

e Tree is made of nodes, each of which
IS root of a subtree

e Each node has left and right children,
and a parent (any may be null)

e Unlike heaps, trees used as BSTs
need not be compact.

parent

left child

left subtree

f

(‘/\

\ node

'{ right child

right subtree

10

What Makes a Binary Tree a BST?

Every node x contains a key value x.key

Every node satisfies the following invariant ("BST property”):

For every nodey in X's left subtree, y.key < x.key
For every node z in X's right subtree, x.key < z.key

(If each key in BST is unique, these inequalities are strict <)

11

What Makes a Binary Tree a BST?

Every node x contains a key value x.key
Every node satisfies the following invariant ("BST property”):
For every nodey in X's left subtree, y.key < x.key °

For every node z in X's right subtree, x.key < z.key ’ a

(If each key in BST is unique, these inequalities are strict <)

12

What Makes a Binary Tree a BST?

Every node x contains a key value x.key

Every node satisfies the following invariant ("BST property”):

For every nodey in X's left subtree, y.key < x.key
For every node z in X's right subtree, x.key < z.key

(If each key in BST is unique, these inequalities are strict <)

13

What Makes a Binary Tree a BST?

Every node x contains a key value x.key

Every node satisfies the following invariant ("BST property”):

For every nodey in X's left subtree, y.key < x.key
For every node z in X's right subtree, x.key < z.key

(If each key in BST is unique, these inequalities are strict <)

14

BST Property in Brief

Node x is = every node in its left subtree
Node x is < every node in its right subtree

[Note that this is a different, stronger tree
invariant than heap property]

15

BST Property in Brief

Node x is = every node in its left subtree °

Node x is < every node in its right subtree

[Note that this is a different, stro _
invariant than heap property] We sometimes talk of

“‘comparing two nodes”...

we actually mean
comparing their keys.

BST Property in Brief (With Unique Keys)

e Node x is > every node in its left subtree
e Node x is < every node in its right subtree

e [Note that thisis a different, stronger tree
invariant than heap property]

17

Using a BST, How Do We Implement...

Find?

Min/Max?

Insert?

Ilterate?

Remove?

18

Caveat - Unigueness

e Inwhat follows, we assume that keys in tree are all unique
e Still possible to have an efficient BST with duplicate keys...
e (E.g.if we must store two records with same key)

e ...butit adds complexity to the ops and/or their correctness proofs.

19

Find: Use the BST Property

e Suppose we searchtree rooted at node x for key k
o If x.key =Kk, we are done!
e Ifx.key >k, search for k in ???

o If x.key <k, search for k in ??7?

20

Find: Use the BST Property

e Suppose we searchtree rooted at node x for key k
o If x.key =Kk, we are done!

e If x.key >k, search for k in subtree rooted at x.left
e If x.key <Kk, search for k in subtree rooted at x.right

e (If desired subtree is null, k is not found)

21

Find Examples

22

Find 67

23

Find 67

24

Find 67

25

Find 67

26

Find 67

27

Find 87

28

Find 8? Not Found!

(If it existed, it would be here)

29

Min and Max

e Thanks to BST property, we can easily find min key in tree...
e Remember, we assume unigque keys

e Min node can’t have other nodes in its left subtree

e Min node can’t be in the right subtree of any other node

e Sowhereis it?

30

Min and Max

e Thanks to BST property, we can easily find min key in tree...
e Remember, we assume unigque keys

e Min node can’t have other nodes in its left subtree

e Min node can’t be in the right subtree of any other node

e Startat root, go left until no longer possible. Final node is min.

31

Min and Max

e ThankstoB key in tree...

e Rememk
Max is found by “opposite”

VN rule (keep going right), for %

similar reasons.

e Min node ar node

e Startat root, go left until no longer possible. Final node is min.

32

Min/Max Examples

min

33

How to Insert a Key into a BST

e An unsuccessful find() ends at null subtree where node containing key
would be if it existed.

e —> Create a new leaf node there and put the key in it!

34

Insert Examples

35

Insert 8

36

Insert 8

8 belongs here

37

Insert 8

38

Insert 15

39

Insert 15

15 belongshere

40

Insert 15

41

Insert 12

42

Insert 12

43

Insert 12

a4

The Story So Far

Find \/

Ilterate?

Remove?

45

Worst-Case Cost of Operations

e Find — might have to walk from root to deepest leaf of tree
e Min/Max— same

e Insert—same

46

Worst-Case Cost of Operations

e Find - ©O(h) for tree of height h
e Min/Max— same

e Insert—same

47

And Now, Some
Slightly Less Trivial
Methods

lteration

As we saw in Lab 7, a collection can provide an iterator

An iterator for a BST starts out pointing to the min node (by key)

Each call to iterator.next() must move from current node to next largest

This operation is called finding the successor of a node

We write it as “succ(x)” for a node x

49

Where is Successor of Node x?

e |If x has arightsubtree T ...
e Leftmost (minimum) node zin T is > x.

e Every node > xthatis notin T is > every node in
T, hence is also > z.

e Conclude that succ(x) = z.

O

T!

50

Where is Successor of Node x?

e |f x has noright subtree...

e If any node of tree is > x, then x is rightmost

(maximum) node in left subtree T of some nodey.

e Every node<ythatisnotinT is <every node in
T, hence is also < x.

e Concludethat succ(x) =.

How to Compute succ(x)

e Ifx has arightsubtree T

e returnmin(T’)

e Else

e follow parent pointers from x until some node y is a right parent
e returny

52

Successor Examples

53

Succ(10)

54

Succ(10) — 10 has aright subtree

55

Succ(10) — min of right subtree of 10is 13

56

Succ(10) =13

o7

Succ(6)

58

Succ(b) — 6 has no right subtree

59

Succ(b) — Follow parents to first right parent

60

Succ(b) — Follow parents to first right parent

61

Succ(b) =7

62

Succ(16)

63

Succ(16) — 16 has no right subtree

64

Succ(16) — follow parents to first right parent?

65

Succ(16) does not exist (16 iIs max!)

66

Worst-Case Cost of Operations

Find — might have to walk from root to deepest leaf of tree
Min/Max — same
Insert— same

Iterate — might have to walk from root to deepest leaf or vice versa

67

Worst-Case Cost of Operations

e Find - ©O(h) for tree of height h
e Min/Max— same
e [nsert—same

e Iterate —same

Last But Not Least, Remove(k)

e First, walk down from root to locate node x with key k, as for find().

e Three possibilities for node x to be removed:

X has one subtree X has two subtrees

6 2 &°a

69

Easy Cases for Removal (Verify BST Property)

e If xis aleaf, removing x does not impact remaining tree at all.
e If X has one subtree, remove x and link subtree’s root to x's parent.

e (BST property holds between x’'s parent and its entire subtree)

®

70

Remove(6)

71

Remove(6)

72

Remove(13)

73

Remove(13)

74

Remove(13)

75

Removing a Node With Two Subtrees

e We cannotjust deletethe node!
e One parent, two subtrees — no place to put one of the subtrees

e Instead, will preserve tree structure by “stealing” key from a subtree

76

Removing a Node With Two Subtrees

e LetXx be node to be deleted, and let y = succ(X).

e Replace x.key by y.key

node x

e This is safe for BST property —why?

e Now delete duplicate copy of y.key by A

removing y nodey = succ(x)

77

Removing a Node With Two Subtrees

e LetXx be node to be deleted, and let y = succ(X).
e Replace x.key by y.key
e This is safe for BST property —why?

e Now delete duplicate copy of y.key by
removing y

nodey = succ(x)

78

Removing a Node With Two Subtrees

e LetXx be node to be deleted, and let y = succ(X).

e Replace x.key by y.key

node x

e This is safe for BST property —why?

e Now delete duplicate copy of y.key by A

removing y nodey = succ(x)

79

Remove 5

80

Remove 5

succ(5)=6

81

Remove 5

succ(5)=6

82

Remove 5

83

Remove 10

84

Remove 10

85

Remove 10

86

Remove 10

87

Sanity Check —Is Recursive Remove Safe?

o If we remove a node with two subtrees...

e Its successor is leftmost node of its right subtree.

o Leftmost node has no left subtree.

e Hence, “recursive” remove always removes node with O or

1 subtrees — easy cases!

88

Worst-Case Cost of Operations

Find — might have to walk from root to deepest leaf of tree
Min/Max — same

Insert— same

Iterate — might have to walk from root to deepest leaf or vice versa

Remove — might have to walk from root to deepest leaf

89

Worst-Case Costs for BST Operations

Find — ©(h) for tree of height h
Min/Max— ©(h) for tree of height h
Insert — O(h) for tree of height h
Iterate — ©(h) for tree of height h

Remove — O(h) for tree of height h

90

Worst-Case Costs for BST Operations

Are these costs sublinear

In n, the # of nodes In the
e Insert—(tree? Depends how #
nodes relates to height.

e |terate —

e Remove — G

91

How Tall Can a BST with n Nodes Be?

(
e Here's a binary tree with n nodes:

e This tree has height 22?2, nnodes <

92

How Tall Can a BST with n Nodes Be?

e Here's a binary tree with n nodes:

e This tree has height n-1.

O

e Can werealizethistree as a BST by some sequence of

Insertions?
93

How Tall Can a BST with n Nodes Be?

e Insert keys 1..n in order

®

94

How Tall Can a BST with n Nodes Be?

e Insert keys 1..n in order

o

95

How Tall Can a BST with n Nodes Be?

e Insert keys 1..n in order

96

How Tall Can a BST with n Nodes Be?

e Insert keys 1..n in order

97

Bad News...

e Given the right sequence of insertions, a BST with n nodes can have
height O(n)

e That means that all our BST operations are worst-case O(n)

e This is no better in the worst case than a list or array. Infact, it’s
worse for some operations (e.g. min/max).

98

Can We Overcome
Worst-Case O(n)
Costs for Tree
Operations?

What If Our Trees Were Never Too Tall?

o Defn: a binary tree with n nodes is said to be balanced if it
has height O(log n).

o« Example: a complete binary tree with 2"-1 nodes has
height n — 1, so is balanced.

o In a balanced BST, all BST ops are worst case O(log n).

100

What If Our Trees Were Never Too Tall?

e Defn: a bin) be balanced If it

Sl Really, we can write
o Example: ¢ @_(Iog n) here —all nodes has
height n — RS AUCESIENYC

height Q(log n).

e In a balanck case O(log n).

101

Strategy for Balancing Trees

1.

Define a structural property P that applies to only some
BSTs

Prove that BSTs satisfying property P are balanced
Make sure a trivial BST (one node) satisfies P

Show how to insert, remove while maintaining P
o l.e.showthat P is an invariant of the BST

102

An Example of a Balance Property

e AVL Property
e Described 1962 by Adelson-Velsky and Landis

o Atree T satisfies the AVL property if for each node in T,
Its left and right subtrees differ in height by at most 1.

e Intuitively, prevents very lopsided trees.

103

AVL Property for Binary Trees — Formal Defn

e Let H(r) be the height of a binary tree rooted at r

e Defn: Tisan AVL tree iff, for every node x in T, one of these is true:
1. X Is a leaf.

2. X has one child, which is a leaf.

3. X has two children, and |H(x.right) — H(x.left)| < 1.

N g f.

AVL Property for Binary Trees — Formal Defn

e Let H(r) be the height of a binary tree rooted at r

e Defn: Tisan AVL tree iff, for every node x in T, one of these is true:
1. X Is a leaf.

2. X has one child, which is a leaf.

3. X has two children, and |H(x.right) — H(x.left)| < 1.

105

Is This an AVL Tree?

106

Is This an AVL Tree? NO!

May not have a node with
one child that is not a leaf.

107

Is This an AVL Tree?

108

Is This an AVL Tree? NO!

Left subtree has height 2;
Right subtree has height O

109

Is This an AVL Tree?

110

Is This an AVL Tree? YES!

111

Why Are AVL Trees Balanced?

Intuitively, a tall tree with few nodes is
“skinny”

Long path to its deepest leaf cannot
have many nodes branching off it.

Skinny trees have subtrees with very
different heights

AVL property prevents skinny trees

112

Why Are AVL Trees Balanced?

e Intuitively, a tall tree with few nodes is
“skinny”

e lLongpathtg Fciicr folinpizliac e
LU idea to prove that an

e Skinny tree AVL tree Is balanced.

different heid

e AVL property prevents skinny trees

113

What is “Skinniest” AVL Tree We Can Build?

e Let N(h) be minimum # of nodes Iin any AVL tree with
height h.

. NO)=1 () N(1) = 2 éD

e« Can we find a formula for N(h) for h > 1?

114

What is “Skinniest” AVL Tree We Can Build?

o Iftree has height h, root’s tallest subtree has height ??7.

115

What is “Skinniest” AVL Tree We Can Build?

o Iftree has height h, root’s tallest subtree has height h-1.

o By AVL property, other subtree must have height = ??7.

116

What is “Skinniest” AVL Tree We Can Build?

o Iftree has height h, root’s tallest subtree has height h-1.
o By AVL property, other subtree must have height = h-2.

e Both subtrees are also AVL trees.

2 subtrees, plus 1

e Hence, N(h) = N(h-1) + N(h-2) + 1 dmmmm . 0 root.

117

What is “Skinniest” AVL Tree We Can Build?

e Iftree has h as height h-1.

Let’'s guess a solution |
o By AVLprog [on -l o cs o () height 2 h-2.

and check our guess.
o Both subtres

e Hence, N(h) = N(h-1) + N(h-2) + 1

118

Lower Bound on AVL Tree Size vs Height

o LEt D =

ﬁ;l ~ 1.618 . [Yes, the golden ratio again]

e Claim: N(h) = ®n

e > Every AVL tree with height h has = ®"nodes

e > Every AVL tree with n nodes has height < log 4(n),

hence Is balanced.
119

Lower Bound Proof, 1/2
o Claim: N(h) = "
o Pf: by induction on h

e Base 1:N(0)=12=®°

e Base 2:.N(1)=22= ¢!

120

Lower Bound Proof, 2/2

e Ind: N(h) = N(h-1) + N(h-2) + 1

o > N(h-1) + N(h-2)

° > q)h—l + th-Z (G—
o = Ph2 (P + 1)

Apply inductive
hypothesis.

121

Lower Bound Proof, 2/2

o Ind: N(h) = N(h-1) + N(h-2) + 1
o > N(h-1) + N(h-2)
° > q)h-l + (Dh-2

o =2 (P +1)

122

Lower Bound Proof, 2/2

e Ind: N(h) = N(h-1) + N(h-2) + 1

. > N(h-1) + N(h-2)
° > q)h-l + q)h-Z

o = QM2 (P + 1)

. — Pph2 P2

° = P, QED

123

Next Time

How can we modify BST insertion and deletion to ensure
that the trees they create are always AVL trees?

124

