Lecture 10: Ordered **Collections** with **Binary Search** Trees



These slides include material originally prepared by Dr. Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole.

Announcements

- Lab 11 out next week balanced binary trees (with coding)
- Exam 2 is Wednesday, April 3rd
 - Same ground rules and procedures as Exam 1 (2-sided crib sheet and nothing else, Piazza post will specify room location)
 - Will cover material since Exam 1 (Master Method)
 - Lectures/studios 5-10 inclusive
 - Review on Sunday 2-5 pm in Louderman 458

Motivation – Limitations of Dictionaries

- We developed hashing to permit efficient dictionaries
 - Insert()
 - Remove()
 - **Find()**
- But hash tables are unsatisfactory in two ways
 - 1. Worst-case op performance is Θ(n) (only *average* case is good)
 - 2. Does not adequately represent naturally ordered collections.

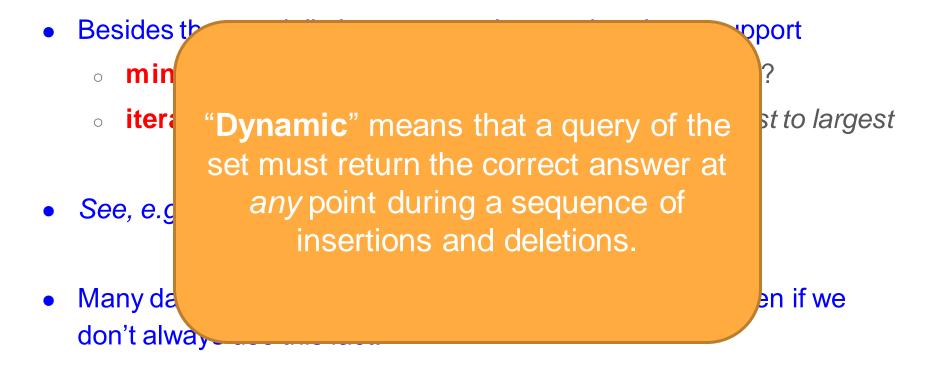
Ordered Dynamic Set Operations

- Besides the usual dictionary operations, ordered sets support
 - **min/max** what is smallest/largest item in collection?
 - **iterator** list collection's items in order *from smallest to largest*

• See, e.g., Java **SortedSet** interface

• Many data types are naturally ordered (strings, ID #'s), even if we don't always use this fact.

Ordered Dynamic Set Operations



Candidate Implementations?

- Sorted Array
 - Θ(log n) find, O(1) min/max, O(1) iteration/item
 - Θ(n) insert/remove
- Sorted List
 - Much like array, except for $\Theta(n)$ find

 (Hash table does not support ordering – must iterate through all items to find min/max or next item in order)

What We Would Like from Our Ordered Sets

- Sub-linear time insert/remove/find
 - (what does sub-linear mean again?)

What We Would Like from Our Ordered Sets

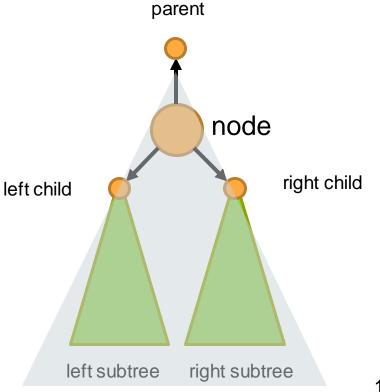
- Sub-linear time insert/remove/find
 - (what does sub-linear mean again?)
- Sub-linear time min/max
- Iteration in sub-linear time per element
- All times **worst-case** (*unlike a hash table*)

How We'll Get It

- New data structure binary search tree (BST)
- Can do all operations in time proportional to height of tree
- But height isn't *necessarily* sub-linear in size (unlike a heap)
- So we'll consider how to force BSTs to have small height

Binary Trees, Revisited

- A BST is a type of binary tree.
- Tree is made of **nodes**, each of which is root of a **subtree**
- Each node has left and right children, and a parent (any may be *null*)
- Unlike heaps, trees used as BSTs need not be compact.



- Every node *x* contains a **key** value *x.key*
- Every node satisfies the following **invariant** ("**BST property**"):
- For every node y in x's *left* subtree, y.key \leq x.key
- For every node z in x's *right* subtree, x.key \leq z.key
- (If each key in BST is *unique*, these inequalities are *strict* <)

Х

Ζ

У

- Every node *x* contains a **key** value *x.key*
- Every node satisfies the following **invariant** ("**BST property**"):
- For every node y in x's *left* subtree, y.key \leq x.key
- For every node z in x's *right* subtree, x.key \leq z.key
- (If each key in BST is *unique*, these inequalities are *strict* <)

- Every node *x* contains a **key** value *x.key*
- Every node satisfies the following **invariant** ("**BST property**"):
- For every node y in x's *left* subtree, y.key \leq x.key
- For every node z in x's *right* subtree, x.key \leq z.key
- (If each key in BST is *unique*, these inequalities are *strict* <)

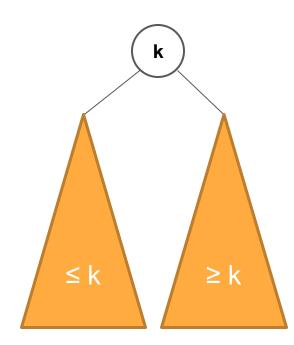
5

- Every node *x* contains a **key** value *x.key*
- Every node satisfies the following **invariant** ("**BST property**"):
- For every node y in x's *left* subtree, y.key ≤ x.key
- For every node z in x's *right* subtree, x.key ≤ z.key
- (If each key in BST is *unique*, these inequalities are *strict <*)

5

BST Property in Brief

- Node x is \geq every node in its *left* subtree
- Node x is ≤ every node in its *right* subtree
- [Note that this is a different, stronger tree invariant than heap property]



BST Property in Brief

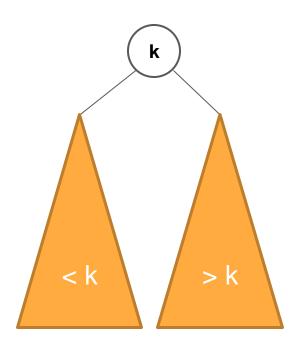
- Node x is \geq every node in its *left* subtree
- Node x is ≤ every node in its *right* subtree
- [Note that this is a different, stron invariant than heap property]

We sometimes talk of "comparing two nodes"... we actually mean comparing their keys.

k

BST Property in Brief (With Unique Keys)

- Node x is > every node in its *left* subtree
- Node x is < every node in its *right* subtree
- [Note that this is a different, stronger tree invariant than heap property]



Using a BST, How Do We Implement...

- Find?
- Min/Max?
- Insert?
- Iterate?
- Remove?

Caveat - Uniqueness

- In what follows, we assume that keys in tree are all unique
- Still possible to have an efficient BST with duplicate keys...
- (E.g. if we must store two records with same key)
- ...but it adds complexity to the ops and/or their correctness proofs.

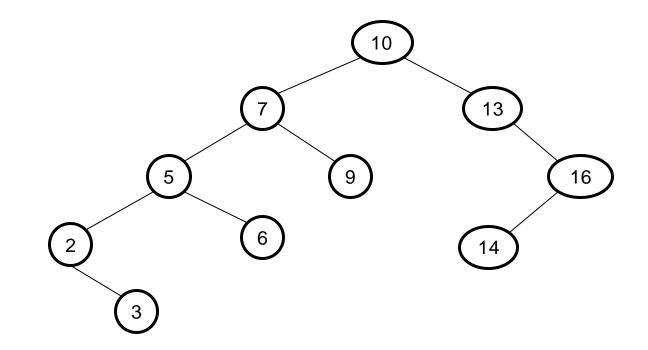
Find: Use the BST Property

- Suppose we search tree rooted at node **x** for key **k**
- If x.key = k, we are done!
- If x.key > k, search for k in ???
- If x.key < k, search for k in ???

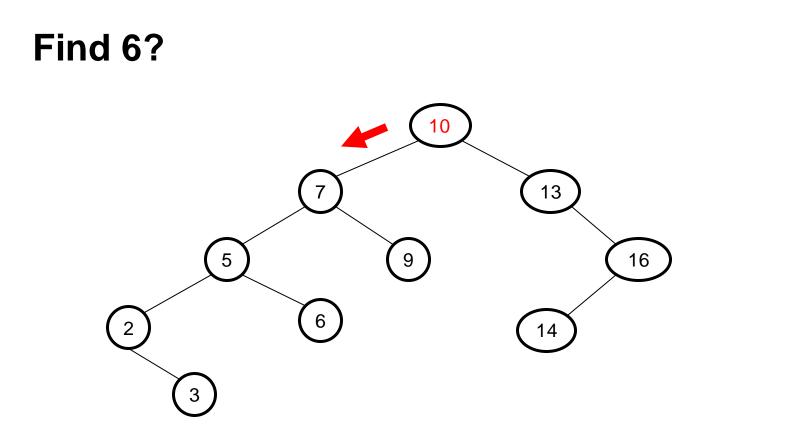
Find: Use the BST Property

- Suppose we search tree rooted at node **x** for key **k**
- If x.key = k, we are done!
- If x.key > k, search for k in subtree rooted at x.left
- If x.key < k, search for k in subtree rooted at x.right
- (If desired subtree is null, k is not found)

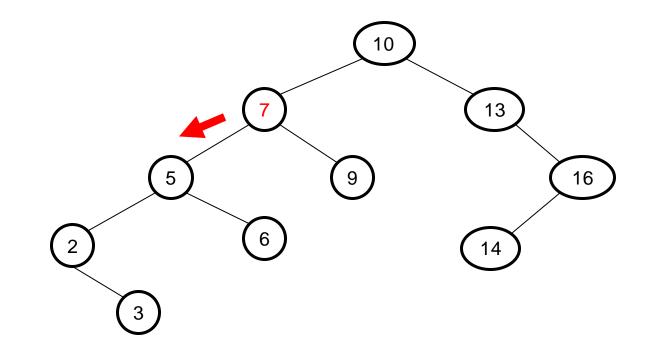
Find Examples



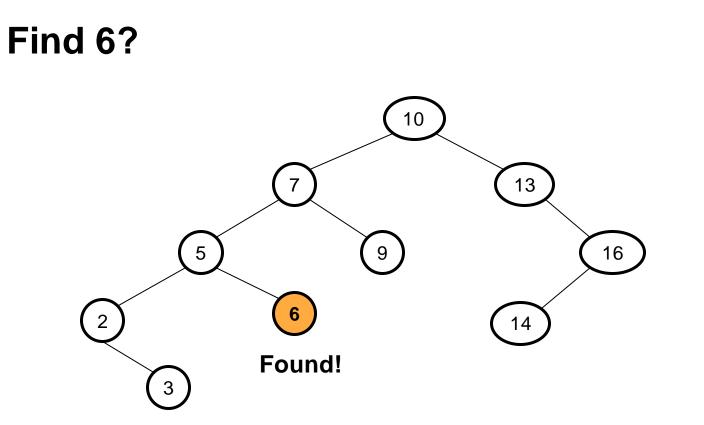
Find 6?

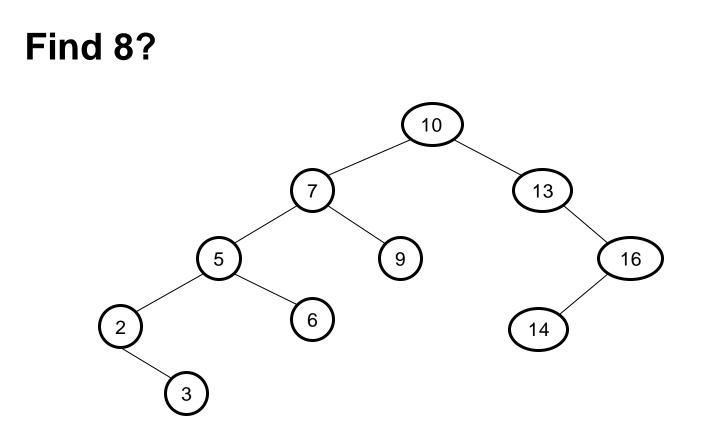


Find 6?

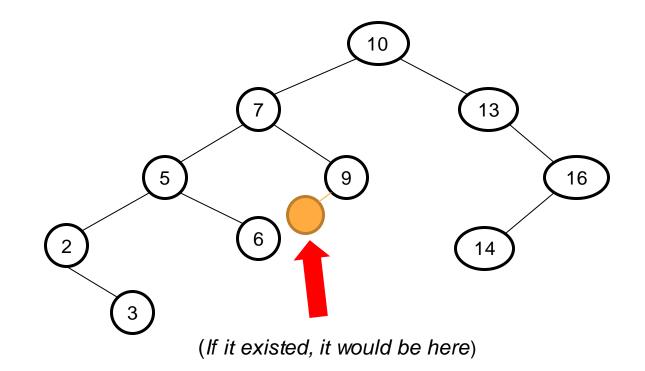


Find 6?





Find 8? Not Found!



Min and Max

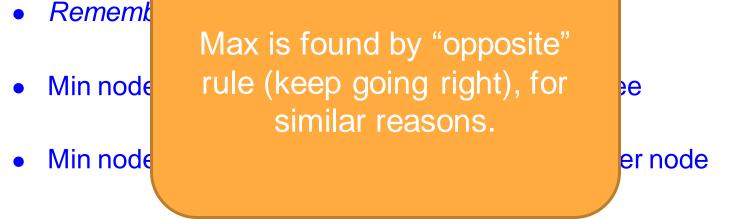
- Thanks to BST property, we can easily find min key in tree...
- *Remember, we assume unique keys*
- Min node can't have other nodes in its left subtree
- Min node can't be in the **right** subtree of any other node
- So where is it?

Min and Max

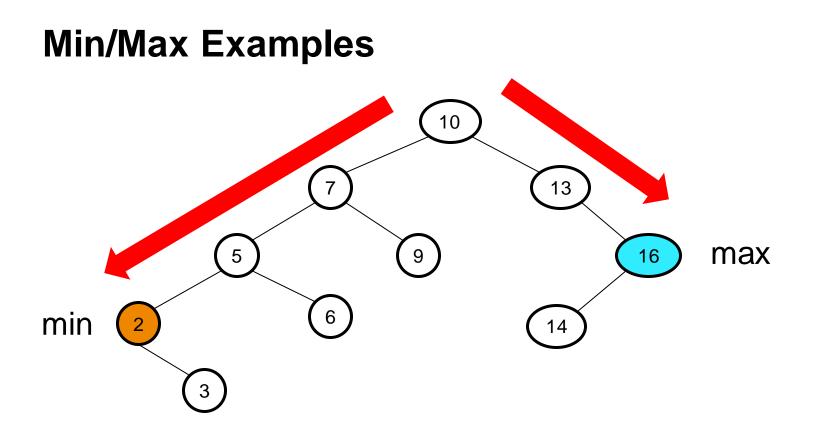
- Thanks to BST property, we can easily find min key in tree...
- *Remember, we assume unique keys*
- Min node can't have other nodes in its left subtree
- Min node can't be in the **right** subtree of any other node
- Start at root, go left until no longer possible. Final node is min.

Min and Max

• Thanks to BST property, we can easily find min key in tree...



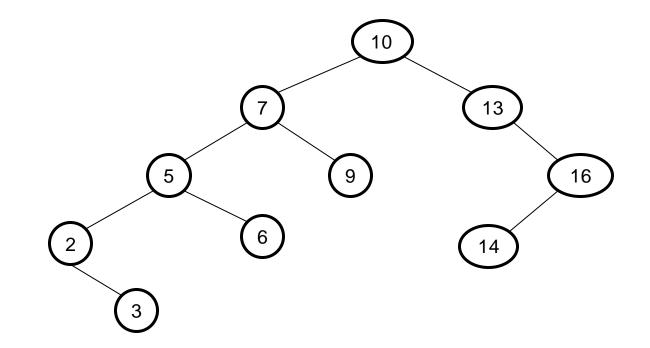
Start at root, go left until no longer possible. Final node is min.

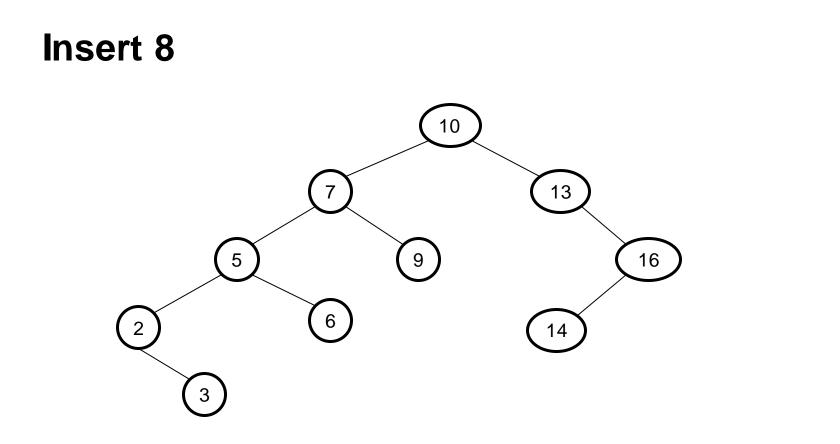


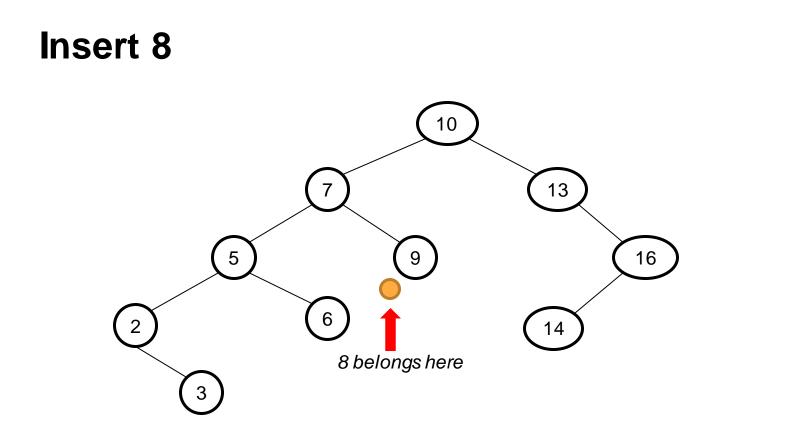
How to Insert a Key into a BST

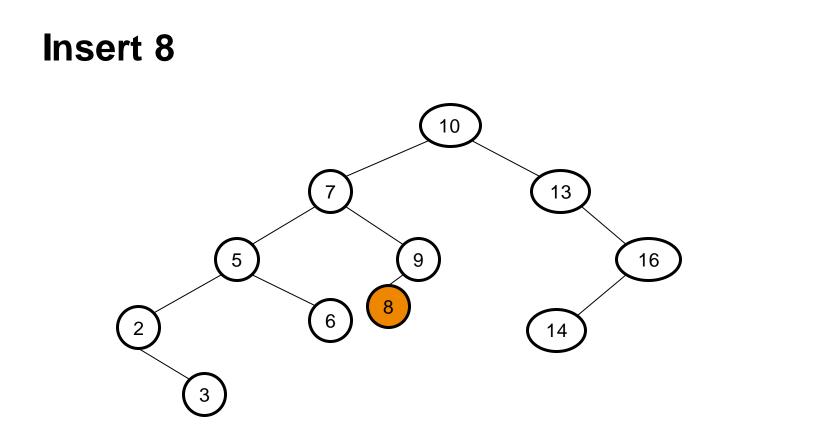
- An unsuccessful find() ends at null subtree where node containing key would be if it existed.
- \rightarrow Create a new leaf node there and put the key in it!

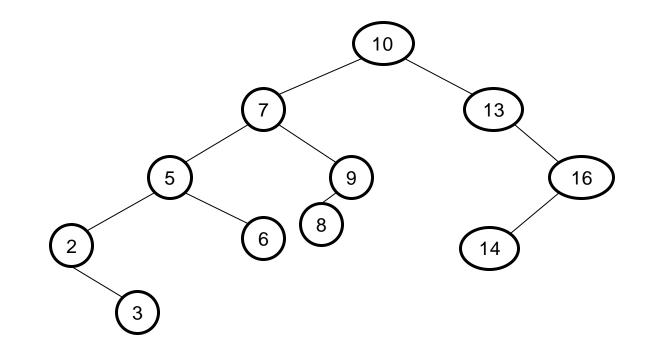
Insert Examples

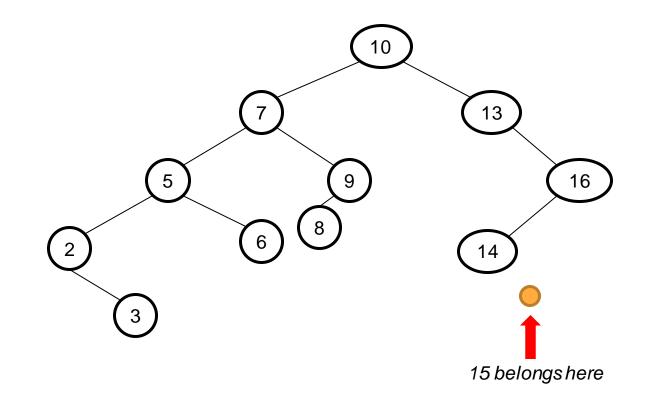


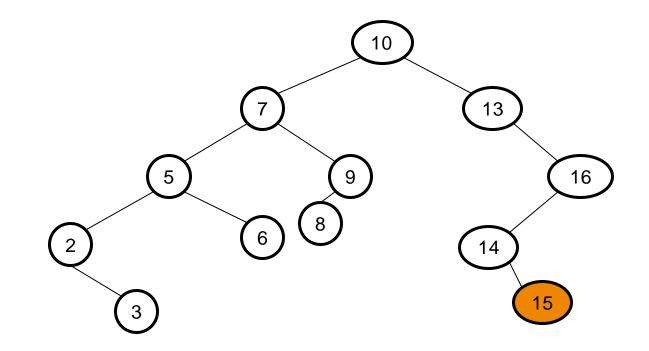


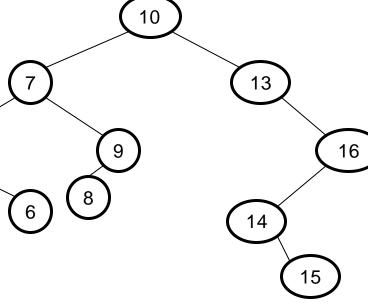


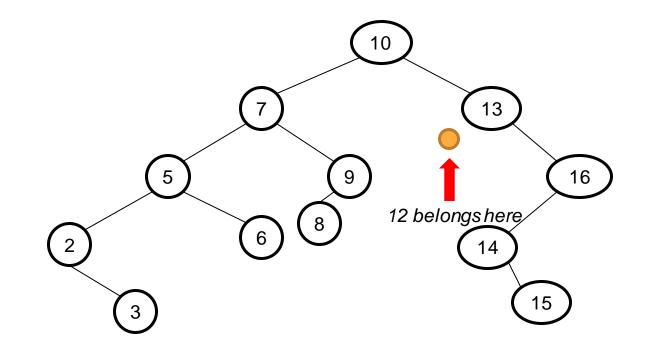


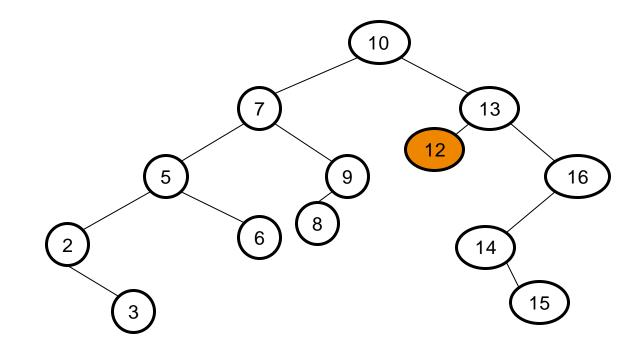












The Story So Far

- Find
- Min/Max
- Insert 🗸
- Iterate?
- Remove?

Worst-Case Cost of Operations

- Find might have to walk from root to deepest leaf of tree
- Min/Max-same
- Insert same
- Iterate?
- Remove?

Worst-Case Cost of Operations

- Find $\Theta(h)$ for tree of height h
- Min/Max same
- Insert same
- Iterate?
- Remove?

And Now, Some Slightly Less Trivial Methods

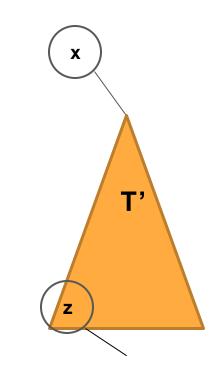
Iteration

- As we saw in Lab 7, a collection can provide an iterator
- An iterator for a BST starts out pointing to the min node (by key)
- Each call to iterator.next() must move from current node to next largest
- This operation is called finding the successor of a node

• We write it as "succ(x)" for a node x

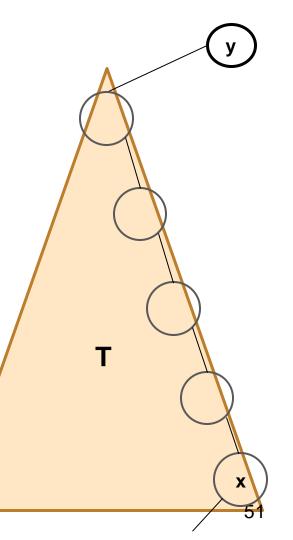
Where is Successor of Node x?

- If x has a right subtree T'...
- Leftmost (minimum) node z in T' is > x.
- Every node > x that is not in T' is > every node in T', hence is also > z.
- Conclude that succ(x) = z.



Where is Successor of Node x?

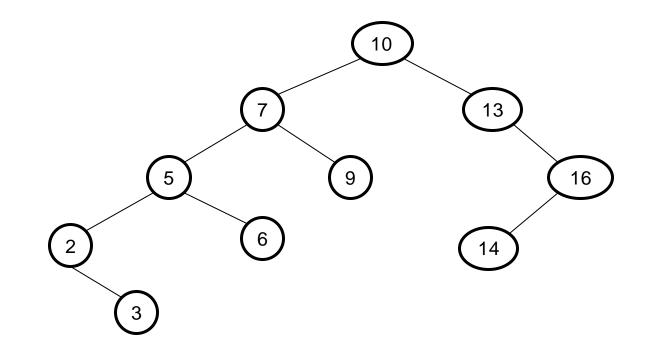
- If x has no right subtree...
- If any node of tree is > x, then x is *rightmost* (maximum) node in left subtree T of some node y.
- Every node < y that is not in T is < every node in T, hence is also < x.
- Conclude that succ(x) = y.



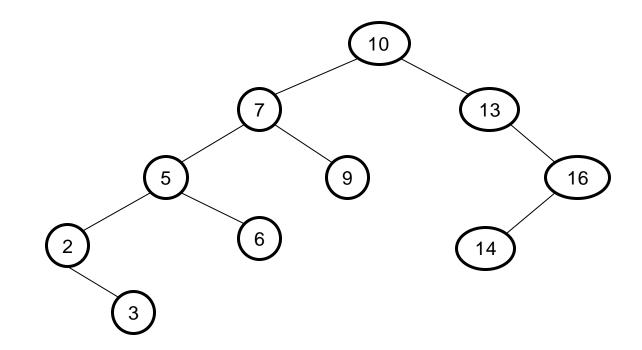
How to Compute succ(x)

- If x has a right subtree T'
- return min(T')
- Else
- follow parent pointers from x until some node y is a right parent
- return y

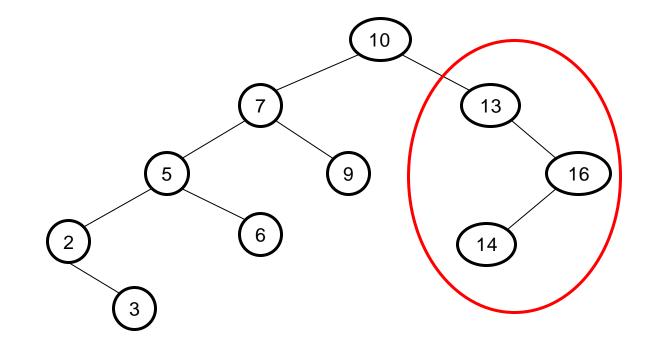
Successor Examples



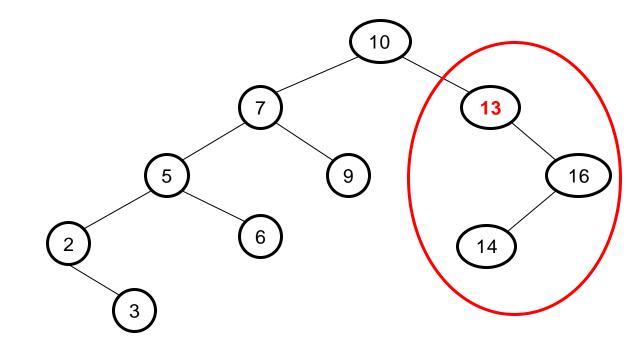
Succ(10)



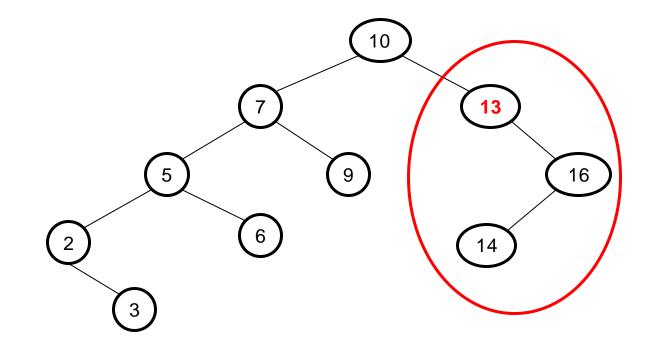
Succ(10) – 10 has a right subtree



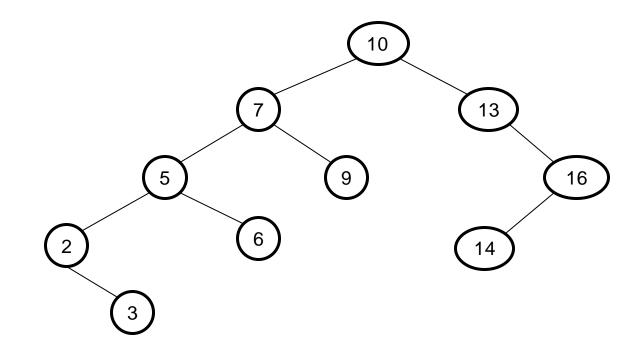
Succ(10) – min of right subtree of 10 is 13



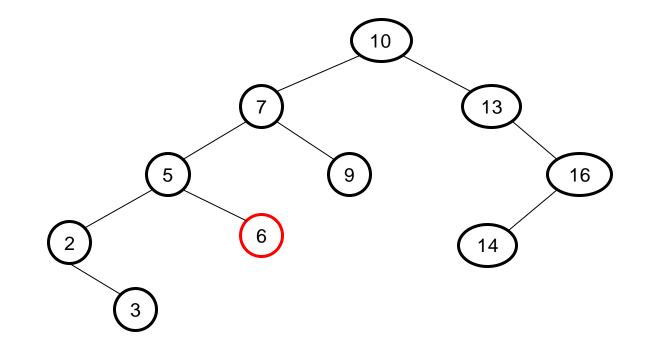
Succ(10) = 13



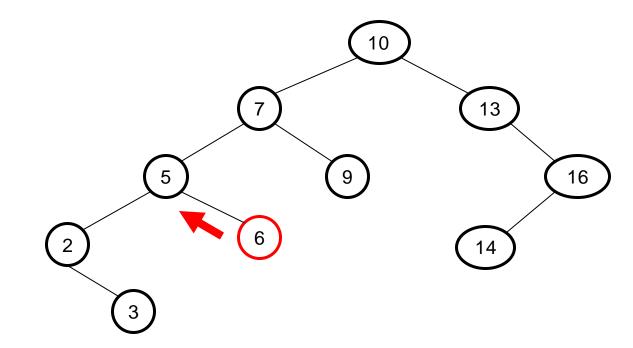
Succ(6)



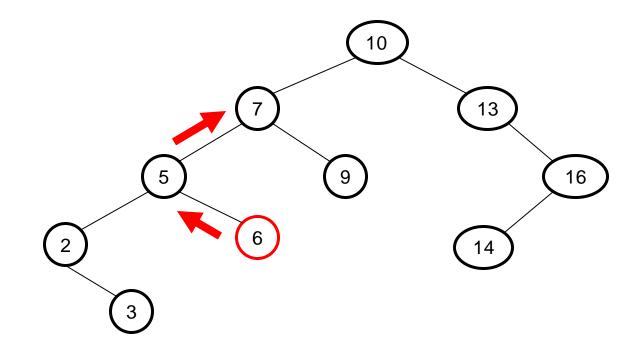
Succ(6) – 6 has no right subtree



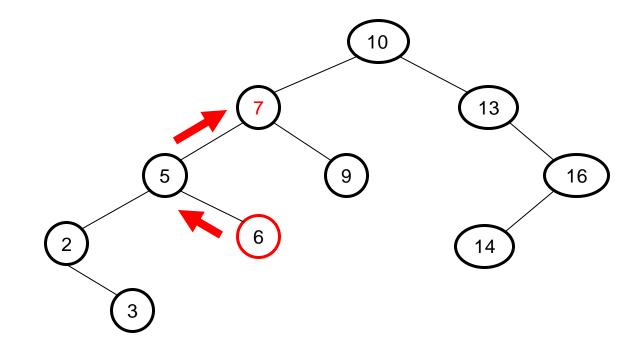
Succ(6) – Follow parents to first right parent



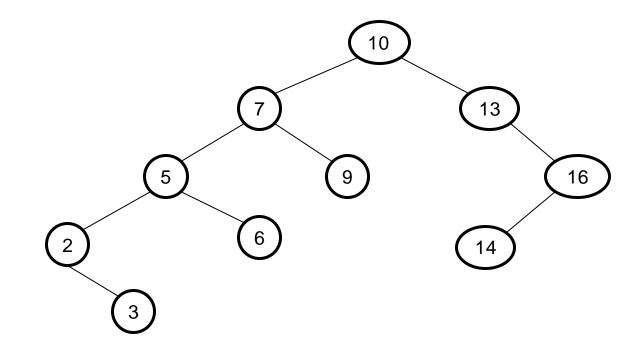
Succ(6) – Follow parents to first right parent



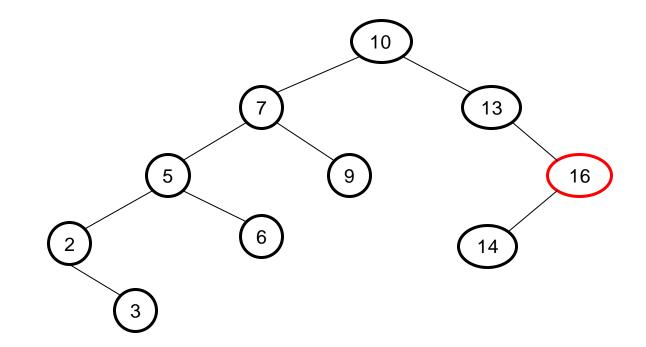
Succ(6) = 7



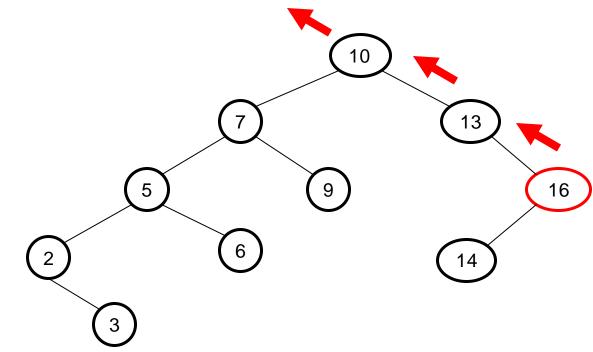
Succ(16)



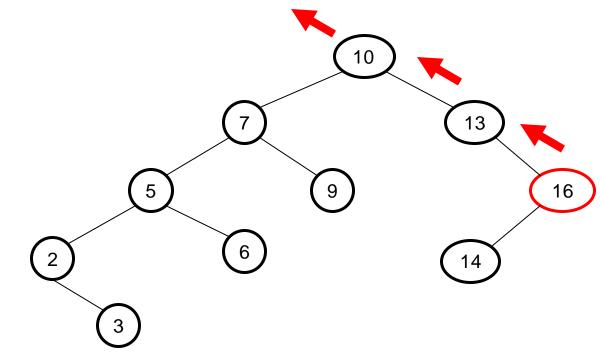
Succ(16) – 16 has no right subtree



Succ(16) – follow parents to first right parent?



Succ(16) does not exist (16 is max!)



Worst-Case Cost of Operations

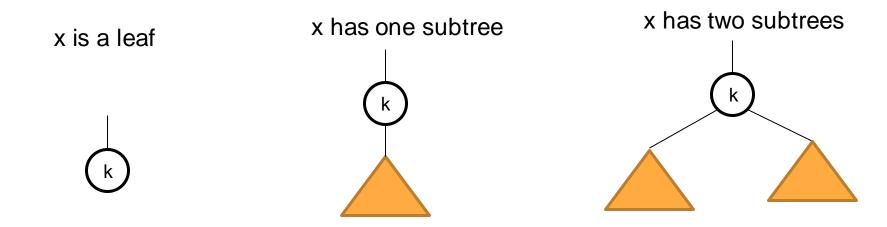
- Find might have to walk from root to deepest leaf of tree
- Min/Max-same
- Insert same
- Iterate might have to walk from root to deepest leaf or vice versa
- Remove?

Worst-Case Cost of Operations

- Find $\Theta(h)$ for tree of height h
- Min/Max-same
- Insert same
- Iterate same
- Remove?

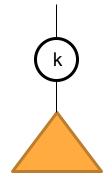
Last But Not Least, Remove(k)

- First, walk down from root to locate node x with key k, as for find().
- Three possibilities for node x to be removed:

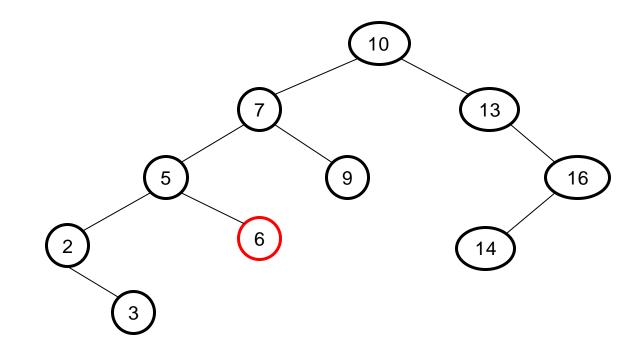


Easy Cases for Removal (Verify BST Property)

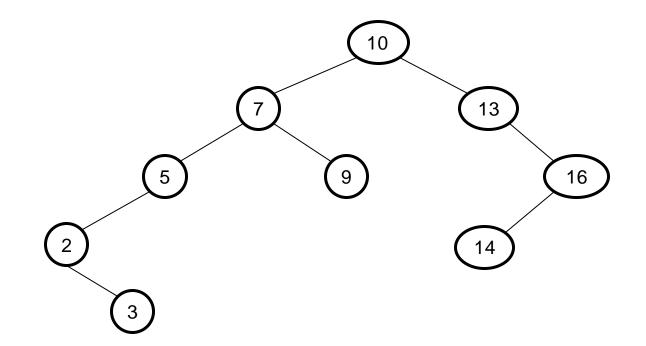
- If x is a leaf, removing x does not impact remaining tree at all.
- If x has one subtree, remove x and link subtree's root to x's parent.
- (BST property holds between x's parent and its *entire subtree*)



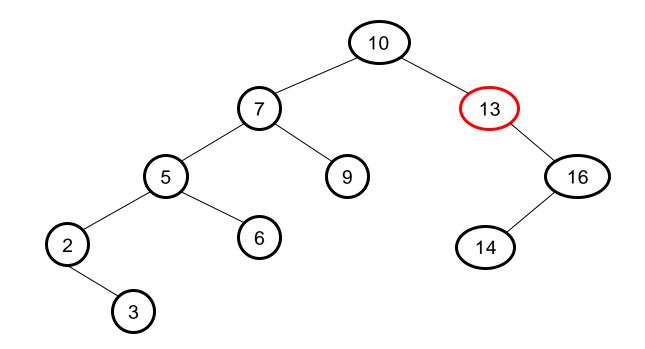
Remove(6)



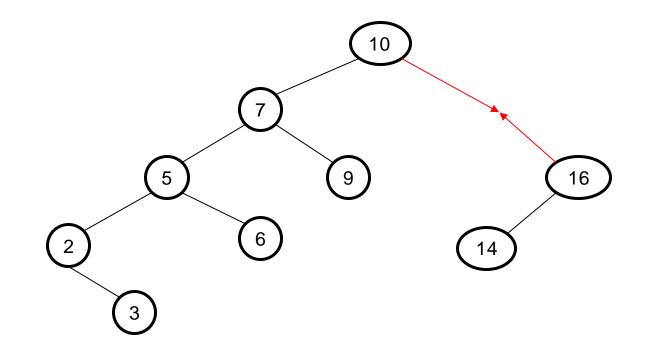
Remove(6)



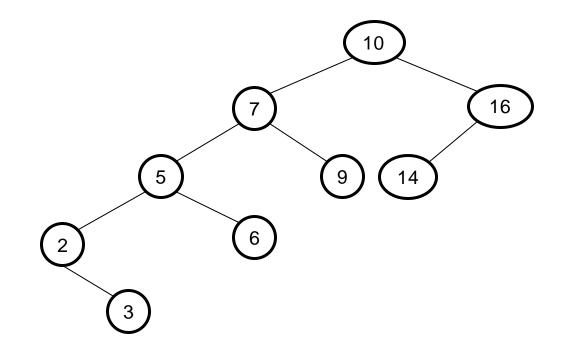
Remove(13)



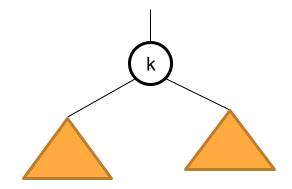
Remove(13)



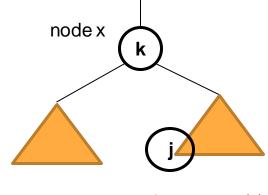
Remove(13)



- We cannot just delete the node!
- One parent, two subtrees no place to put one of the subtrees
- Instead, will preserve tree structure by "stealing" key from a subtree

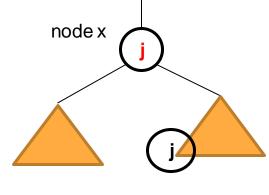


- Let x be node to be deleted, and let y = succ(x).
- Replace x.key by y.key
- This is safe for BST property why?
- Now delete duplicate copy of y.key by removing y



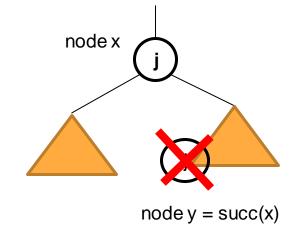
node y = succ(x)

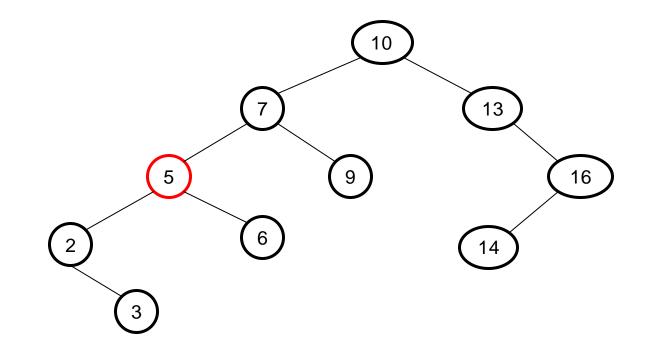
- Let x be node to be deleted, and let y = succ(x).
- Replace x.key by y.key
- This is safe for BST property why?
- Now delete duplicate copy of y.key by removing y

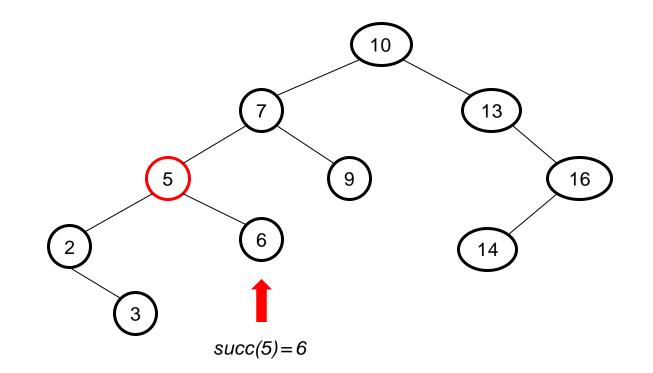


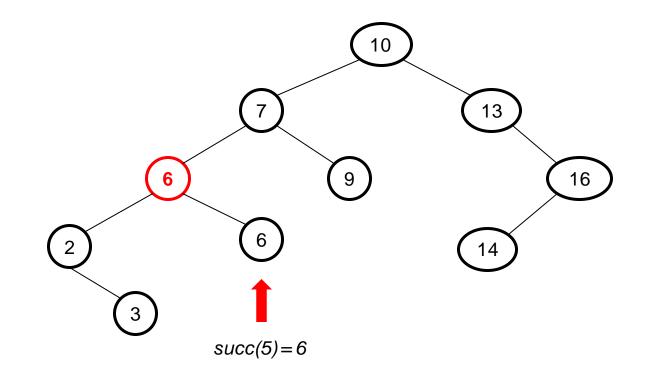
node y = succ(x)

- Let x be node to be deleted, and let y = succ(x).
- Replace x.key by y.key
- This is safe for BST property why?
- Now delete duplicate copy of y.key by removing y

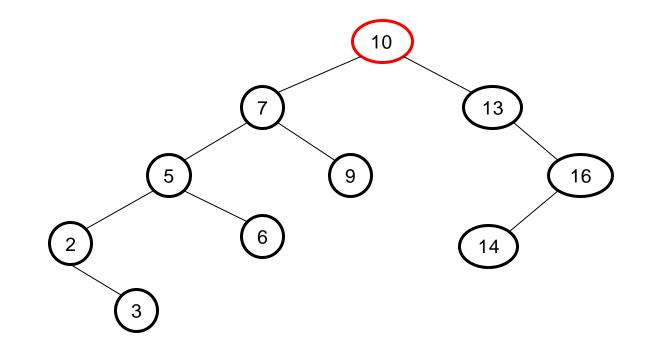


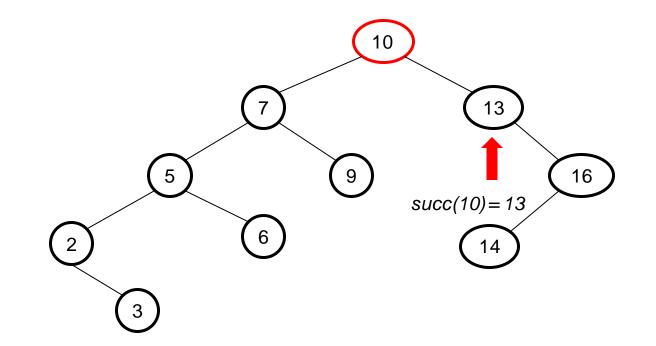


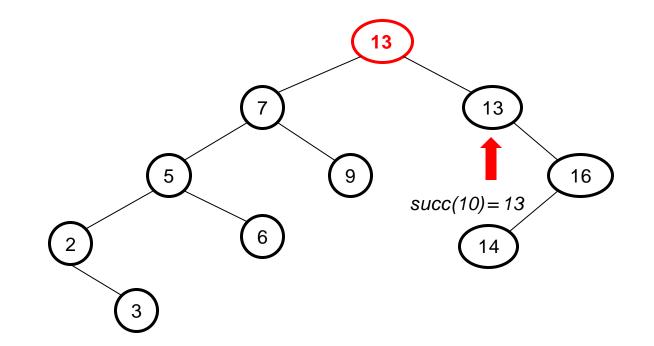


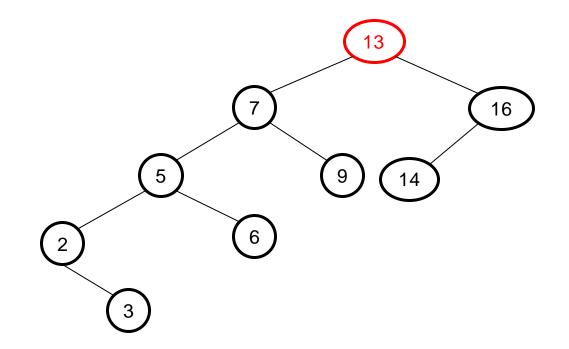












Sanity Check – Is Recursive Remove Safe?

- If we remove a node with two subtrees...
- Its successor is leftmost node of its right subtree.

- Leftmost node has no left subtree.
- Hence, "recursive" remove always removes node with 0 or 1 subtrees – easy cases!

Worst-Case Cost of Operations

- Find might have to walk from root to deepest leaf of tree
- Min/Max-same
- Insert same
- Iterate might have to walk from root to deepest leaf or vice versa
- Remove might have to walk from root to deepest leaf

Worst-Case Costs for BST Operations

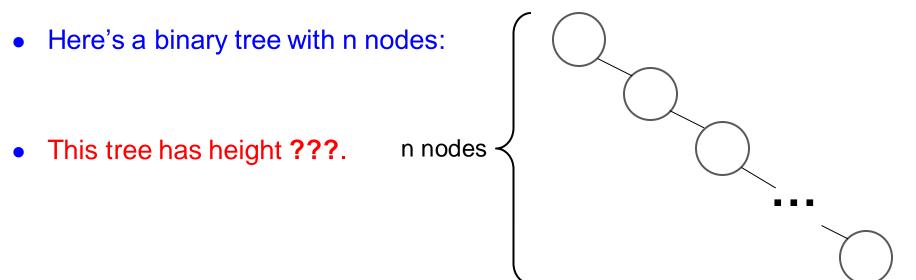
- Find $\Theta(h)$ for tree of height h
- $Min/Max \Theta(h)$ for tree of height h
- Insert $\Theta(h)$ for tree of height h
- Iterate $\Theta(h)$ for tree of height h
- Remove $\Theta(h)$ for tree of height h

Worst-Case Costs for BST Operations

- Find $-\Theta$
- Min/Max
- Insert-
- Iterate –

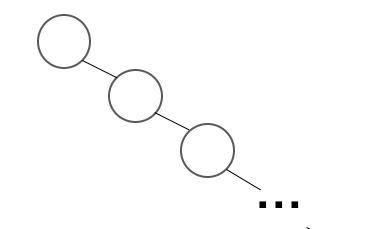
Are these costs sublinear in n, the # of nodes in the tree? Depends how # nodes relates to height.

Remove – Θ(n) for tree of neight n

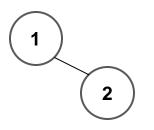


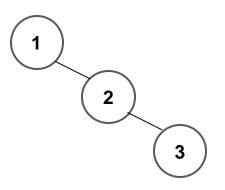
• Here's a binary tree with n nodes:

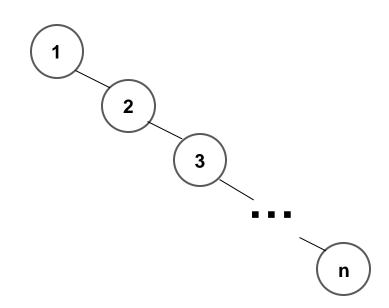
• This tree has height **n-1**.



• Can we realize this tree as a BST by some sequence of insertions?







Bad News...

- Given the right sequence of insertions, a BST with n nodes can have height $\Theta(n)$
- That means that all our BST operations are worst-case $\Theta(n)$
- This is no better in the worst case than a list or array. In fact, it's *worse* for some operations (e.g. min/max).

Can We Overcome Worst-Case $\Theta(n)$ Costs for Tree **Operations**?

What If Our Trees Were Never Too Tall?

- Defn: a binary tree with n nodes is said to be balanced if it has height O(log n).
- Example: a complete binary tree with 2ⁿ-1 nodes has height n – 1, so is balanced.
- In a balanced BST, all BST ops are worst case O(log n).

What If Our Trees Were Never Too Tall?

Defn: a bing be balanced if it has height Really, we can write $\Theta(\log n)$ here – all • Example: a nodes has binary trees have height n – height $\Omega(\log n)$. In a balance t case O(log n).

Strategy for Balancing Trees

- Define a structural property P that applies to only some BSTs
- 2. Prove that BSTs satisfying property P are balanced
- 3. Make sure a trivial BST (one node) satisfies P
- 4. Show how to insert, remove while maintaining P
 o i.e. show that P is an *invariant* of the BST

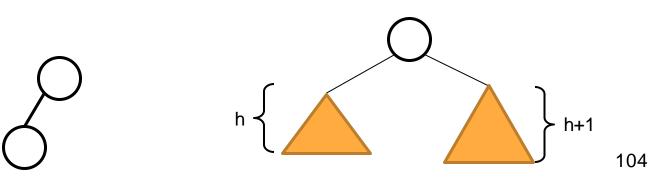
An Example of a Balance Property

- AVL Property
- Described 1962 by Adelson-Velsky and Landis

- A tree T satisfies the AVL property if for each node in T, its *left and right subtrees differ in height by at most 1.*
- Intuitively, prevents very lopsided trees.

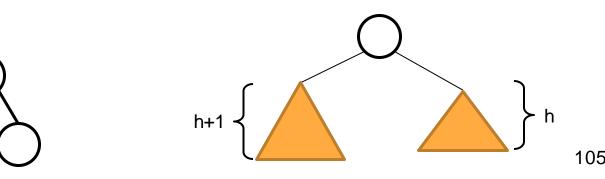
AVL Property for Binary Trees – Formal Defn

- Let H(r) be the height of a binary tree rooted at r
- Defn: T is an **AVL tree** iff, for every node x in T, one of these is true:
- 1. x is a leaf.
- 2. x has one child, which is a leaf.
- 3. x has two children, and $|H(x.right) H(x.left)| \le 1$.

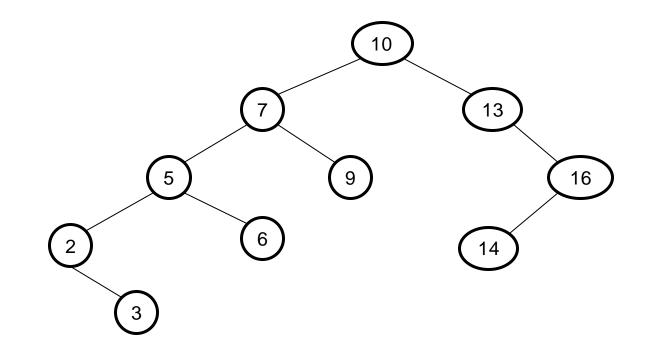


AVL Property for Binary Trees – Formal Defn

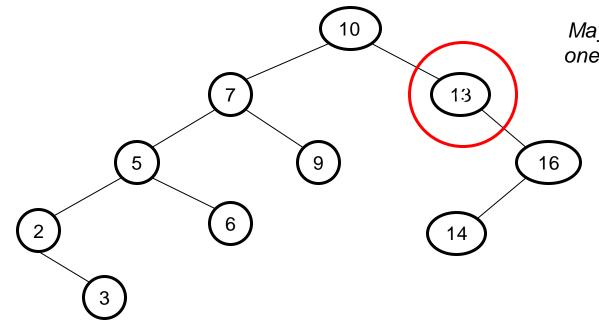
- Let H(r) be the height of a binary tree rooted at r
- Defn: T is an **AVL tree** iff, for every node x in T, one of these is true:
- 1. x is a leaf.
- 2. x has one child, which is a leaf.
- 3. x has two children, and $|H(x.right) H(x.left)| \le 1$.



Is This an AVL Tree?

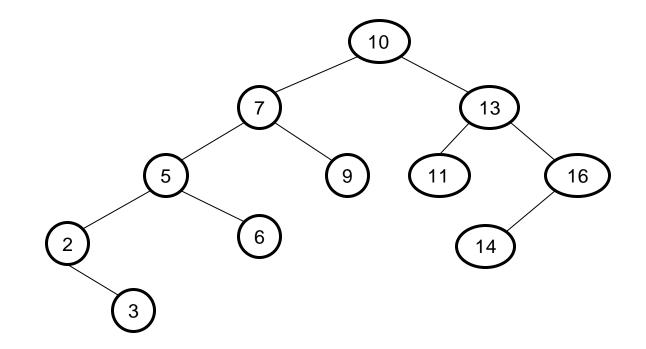


Is This an AVL Tree? NO!

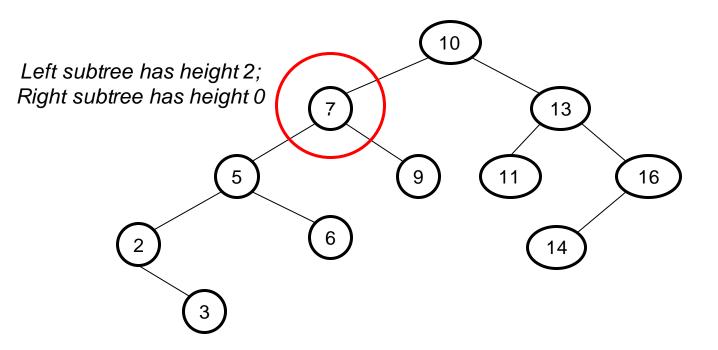


May not have a node with one child that is not a leaf.

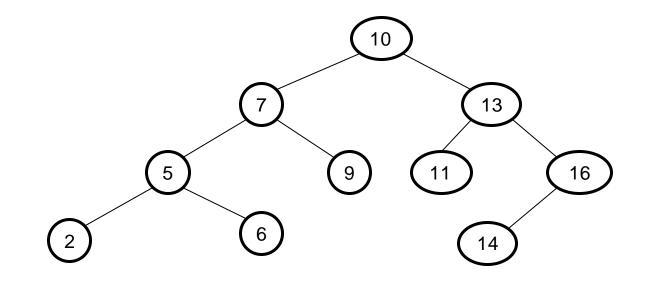
Is This an AVL Tree?



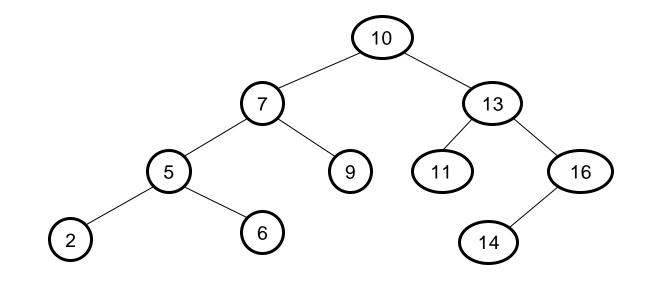
Is This an AVL Tree? NO!



Is This an AVL Tree?

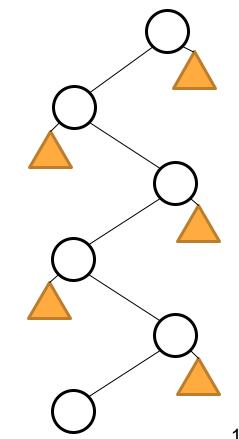


Is This an AVL Tree? YES!



Why Are AVL Trees Balanced?

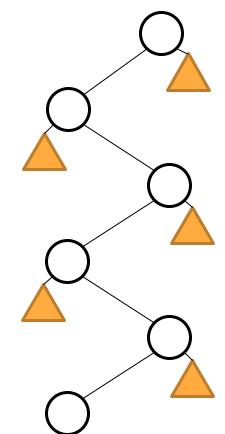
- Intuitively, a tall tree with few nodes is "skinny"
- Long path to its deepest leaf cannot have many nodes branching off it.
- Skinny trees have subtrees with very different heights
- AVL property prevents skinny trees



Why Are AVL Trees Balanced?

- Intuitively, a tall tree with few nodes is "skinny"
- Long path to have many r
- Skinny trees different heig

Let's formalize this idea to prove that an AVL tree is balanced.



• AVL property prevents skinny trees

 Let N(h) be minimum # of nodes in any AVL tree with height h.

• Can we find a formula for N(h) for h > 1?

• If tree has height h, root's tallest subtree has height ???.

- If tree has height h, root's tallest subtree has height h-1.
- By AVL property, other subtree must have height \geq ???.

- If tree has height h, root's tallest subtree has height h-1.
- By AVL property, other subtree must have height \geq h-2.
- Both subtrees are also AVL trees.
- Hence, N(h) = N(h-1) + N(h-2) + 1

2 subtrees, plus 1 node for root.

- If tree has h
- By AVL prop

Both subtree

Let's guess a solution to recurrence for N(h) and check our guess. has height h-1.

height \geq h-2.

• Hence, N(h) = N(h-1) + N(h-2) + 1

Lower Bound on AVL Tree Size vs Height

• Let $\Phi = \frac{\sqrt{5}+1}{2} \approx 1.618$. [Yes, the golden ratio again]

- Claim: $N(h) \ge \Phi^h$
- \rightarrow Every AVL tree with height h has $\geq \Phi^h$ nodes

 → Every AVL tree with n nodes has height ≤ log_φ(n), hence is balanced.

Lower Bound Proof, 1/2

- Claim: $N(h) \ge \Phi^h$
- Pf: by induction on h
- Base 1: $N(0) = 1 \ge \Phi^0$
- Base 2: $N(1) = 2 \ge \Phi^1$

Lower Bound Proof, 2/2

• Ind: N(h) = N(h-1) + N(h-2) + 1

- $\geq N(h-1) + N(h-2)$
 - $\geq \Phi^{h-1} + \Phi^{h-2}$

• $= \Phi^{h-2} (\Phi + 1)$

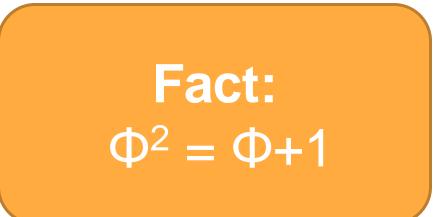
Apply inductive hypothesis.

Lower Bound Proof, 2/2

• Ind: N(h) = N(h-1) + N(h-2) + 1

- $\geq N(h-1) + N(h-2)$
- $\geq \Phi^{h-1} + \Phi^{h-2}$

 $= \Phi^{h-2} (\Phi + 1)$



Lower Bound Proof, 2/2

• Ind: N(h) = N(h-1) + N(h-2) + 1

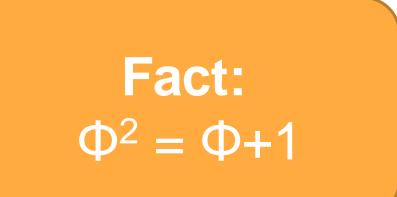
• $\geq N(h-1) + N(h-2)$

≥ Φ^{h-1} + Φ^{h-2}

 $= \Phi^{h-2} (\Phi + 1)$

 $= \Phi^{h-2} \Phi^2$

 $= \Phi^{h}$. QED



Next Time

How can we modify BST insertion and deletion to ensure that the trees they create are always AVL trees?