
Lecture 10:

Ordered 

Collections with 

Binary Search 

Trees
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These slides include material originally prepared by Dr. Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole.



Announcements

● Lab 11 out next week – balanced binary trees (with coding)

● Exam 2 is Wednesday, April 3rd

○ Same ground rules and procedures as Exam 1 (2-sided crib sheet 

and nothing else, Piazza post will specify room location)

○ Will cover material since Exam 1 (Master Method)

■ Lectures/studios 5-10 inclusive

○ Review on Sunday 2-5 pm in Louderman 458
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Motivation – Limitations of Dictionaries

● We developed hashing to permit efficient dictionaries

○ Insert()

○ Remove()

○ Find()

● But hash tables are unsatisfactory in two ways

1. Worst-case op performance is Θ(n) (only average case is good)

2. Does not adequately represent naturally ordered collections.

3



Ordered Dynamic Set Operations

● Besides the usual dictionary operations, ordered sets support

○ min / max – what is smallest/largest item in collection?

○ iterator – list collection’s items in order from smallest to largest

● See, e.g., Java SortedSet interface

● Many data types are naturally ordered (strings, ID #’s), even if we 

don’t always use this fact.
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Ordered Dynamic Set Operations

● Besides the usual dictionary operations, ordered sets support

○ min / max – what is smallest/largest item in collection?

○ iterator – list the items in the set in order from smallest to largest

● See, e.g., Java SortedSet interface

● Many data types are naturally ordered (strings, ID #’s), even if we 

don’t always use this fact.
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“Dynamic” means that a query of the 

set must return the correct answer at 

any point during a sequence of 

insertions and deletions.



Candidate Implementations?

● Sorted Array

○ Θ(log n) find, O(1) min/max, O(1) iteration/item

○ Θ(n) insert/remove

● Sorted List

○ Much like array, except for Θ(n) find

● (Hash table does not support ordering – must iterate 

through all items to find min/max or next item in order)
6



What We Would Like from Our Ordered Sets

● Sub-linear time insert/remove/find 

○ (what does sub-linear mean again?)

7



What We Would Like from Our Ordered Sets

● Sub-linear time insert/remove/find 

○ (what does sub-linear mean again?)

● Sub-linear time min/max

● Iteration in sub-linear time per element

● All times worst-case (unlike a hash table)
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How We’ll Get It

● New data structure – binary search tree (BST)

● Can do all operations in time proportional to height of tree

● But height isn’t necessarily sub-linear in size (unlike a heap)

● So we’ll consider how to force BSTs to have small height
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Binary Trees, Revisited

● A BST is a type of binary tree.

● Tree is made of nodes, each of which 

is root of a subtree

● Each node has left and right children, 

and a parent (any may be null)

● Unlike heaps, trees used as BSTs 

need not be compact.
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What Makes a Binary Tree a BST?

● Every node x contains a key value x.key

● Every node satisfies the following invariant (“BST property”):

● For every node y in x’s left subtree, y.key ≤ x.key

● For every node z in x’s right subtree, x.key ≤ z.key

● (If each key in BST is unique, these inequalities are strict <)
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What Makes a Binary Tree a BST?

● Every node x contains a key value x.key

● Every node satisfies the following invariant (“BST property”):

● For every node y in x’s left subtree, y.key ≤ x.key

● For every node z in x’s right subtree, x.key ≤ z.key

● (If each key in BST is unique, these inequalities are strict <)
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What Makes a Binary Tree a BST?

● Every node x contains a key value x.key

● Every node satisfies the following invariant (“BST property”):

● For every node y in x’s left subtree, y.key ≤ x.key

● For every node z in x’s right subtree, x.key ≤ z.key

● (If each key in BST is unique, these inequalities are strict <)
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What Makes a Binary Tree a BST?

● Every node x contains a key value x.key

● Every node satisfies the following invariant (“BST property”):

● For every node y in x’s left subtree, y.key ≤ x.key

● For every node z in x’s right subtree, x.key ≤ z.key

● (If each key in BST is unique, these inequalities are strict <)
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BST Property in Brief

● Node x is ≥ every node in its left subtree

● Node x is ≤ every node in its right subtree

● [Note that this is a different, stronger tree 

invariant than heap property]
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BST Property in Brief

● Node x is ≥ every node in its left subtree

● Node x is ≤ every node in its right subtree

● [Note that this is a different, stronger tree 

invariant than heap property]
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k

≤ k ≥ k

We sometimes talk of 

“comparing two nodes”… 

we actually mean 

comparing their keys.



BST Property in Brief (With Unique Keys)

● Node x is > every node in its left subtree

● Node x is < every node in its right subtree

● [Note that this is a different, stronger tree 

invariant than heap property]
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Using a BST, How Do We Implement…

● Find?

● Min/Max?

● Insert?

● Iterate?

● Remove?
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Caveat - Uniqueness

● In what follows, we assume that keys in tree are all unique

● Still possible to have an efficient BST with duplicate keys…

● (E.g. if we must store two records with same key)

● …but it adds complexity to the ops and/or their correctness proofs.
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Find: Use the BST Property

● Suppose we search tree rooted at node x for key k

● If x.key = k, we are done!

● If x.key > k, search for k in ???

● If x.key < k, search for k in ???
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Find: Use the BST Property

● Suppose we search tree rooted at node x for key k

● If x.key = k, we are done!

● If x.key > k, search for k in subtree rooted at x.left

● If x.key < k, search for k in subtree rooted at x.right

● (If desired subtree is null, k is not found)
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Find Examples
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Find 6?
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Find 6?
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Find 8?
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Find 8?  Not Found!
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Min and Max

● Thanks to BST property, we can easily find min key in tree…

● Remember, we assume unique keys

● Min node can’t have other nodes in its left subtree

● Min node can’t be in the right subtree of any other node

● So where is it?
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Min and Max

● Thanks to BST property, we can easily find min key in tree…

● Remember, we assume unique keys

● Min node can’t have other nodes in its left subtree

● Min node can’t be in the right subtree of any other node

● Start at root, go left until no longer possible. Final node is min.
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Min and Max

● Thanks to BST property, we can easily find min key in tree…

● Remember, we assume unique keys

● Min node can’t have other nodes in its left subtree

● Min node can’t be in the right subtree of any other node

● Start at root, go left until no longer possible. Final node is min.
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Max is found by “opposite” 

rule (keep going right), for 

similar reasons.



Min/Max Examples
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How to Insert a Key into a BST

● An unsuccessful find() ends at null subtree where node containing key 

would be if it existed.

● → Create a new leaf node there and put the key in it!
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Insert Examples
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Insert 8
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Insert 15
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The Story So Far

● Find

● Min/Max

● Insert

● Iterate?

● Remove?
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Worst-Case Cost of Operations

● Find – might have to walk from root to deepest leaf of tree

● Min/Max – same 

● Insert – same 

● Iterate?

● Remove?
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Worst-Case Cost of Operations

● Find – Θ(h) for tree of height h

● Min/Max – same

● Insert – same

● Iterate?

● Remove?
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And Now, Some 

Slightly Less Trivial 

Methods
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Iteration

● As we saw in Lab 7, a collection can provide an iterator

● An iterator for a BST starts out pointing to the min node (by key)

● Each call to iterator.next() must move from current node to next largest

● This operation is called finding the successor of a node

● We write it as “succ(x)” for a node x
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Where is Successor of Node x?

● If x has a right subtree T’…

● Leftmost (minimum) node z in T’ is > x.

● Every node > x that is not in T’ is > every node in 

T’, hence is also > z.

● Conclude that succ(x) = z.
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Where is Successor of Node x?

● If x has no right subtree…

● If any node of tree is > x, then x is rightmost 

(maximum) node in left subtree T of some node y.

● Every node < y that is not in T is < every node in 

T, hence is also < x.

● Conclude that succ(x) = y.
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x
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How to Compute succ(x)

● If x has a right subtree T’

● return min(T’)

● Else 

● follow parent pointers from x until some node y is a right parent

● return y
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Successor Examples
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Succ(10)
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Succ(10) – 10 has a right subtree
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Succ(10) – min of right subtree of 10 is 13
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Succ(10) = 13
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Succ(6)
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Succ(6) – 6 has no right subtree
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Succ(6) – Follow parents to first right parent
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Succ(6) – Follow parents to first right parent
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Succ(6) = 7
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Succ(16)
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Succ(16) – 16 has no right subtree
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Succ(16) – follow parents to first right parent?
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Succ(16) does not exist (16 is max!)
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Worst-Case Cost of Operations

● Find – might have to walk from root to deepest leaf of tree

● Min/Max – same 

● Insert – same 

● Iterate – might have to walk from root to deepest leaf or vice versa

● Remove?
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Worst-Case Cost of Operations

● Find – Θ(h) for tree of height h

● Min/Max – same

● Insert – same

● Iterate – same

● Remove?
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Last But Not Least, Remove(k)

● First, walk down from root to locate node x with key k, as for find().

● Three possibilities for node x to be removed:
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k

k
k

x is a leaf x has one subtree x has two subtrees



Easy Cases for Removal (Verify BST Property)

● If x is a leaf, removing x does not impact remaining tree at all.

● If x has one subtree, remove x and link subtree’s root to x’s parent.

● (BST property holds between x’s parent and its entire subtree)
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Remove(6)
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Remove(13)
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Remove(13)
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Remove(13)
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Removing a Node With Two Subtrees

● We cannot just delete the node!

● One parent, two subtrees – no place to put one of the subtrees

● Instead, will preserve tree structure by “stealing” key from a subtree
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Removing a Node With Two Subtrees

● Let x be node to be deleted, and let y = succ(x).

● Replace x.key by y.key

● This is safe for BST property – why?

● Now delete duplicate copy of y.key by   

removing y

77
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Removing a Node With Two Subtrees

● Let x be node to be deleted, and let y = succ(x).

● Replace x.key by y.key

● This is safe for BST property – why?

● Now delete duplicate copy of y.key by   

removing y
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Removing a Node With Two Subtrees

● Let x be node to be deleted, and let y = succ(x).

● Replace x.key by y.key

● This is safe for BST property – why?

● Now delete duplicate copy of y.key by   

removing y
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Remove 5
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Remove 5

81

10

7 13

16

14

5 9

62

3

succ(5) = 6



Remove 5
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Remove 10

84

10

7 13

16

14

5 9

62

3



Remove 10
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Remove 10
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Sanity Check – Is Recursive Remove Safe?

● If we remove a node with two subtrees…

● Its successor is leftmost node of its right subtree.

● Leftmost node has no left subtree.

● Hence, “recursive” remove always removes node with 0 or 

1 subtrees – easy cases!
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Worst-Case Cost of Operations

● Find – might have to walk from root to deepest leaf of tree

● Min/Max – same 

● Insert – same 

● Iterate – might have to walk from root to deepest leaf or vice versa

● Remove – might have to walk from root to deepest leaf
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Worst-Case Costs for BST Operations

● Find – Θ(h) for tree of height h

● Min/Max – Θ(h) for tree of height h

● Insert – Θ(h) for tree of height h

● Iterate – Θ(h) for tree of height h

● Remove – Θ(h) for tree of height h
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Worst-Case Costs for BST Operations

● Find – Θ(h) for tree of height h

● Min/Max – Θ(h) for tree of height h

● Insert – Θ(h) for tree of height h

● Iterate – Θ(h) for tree of height h

● Remove – Θ(h) for tree of height h
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Are these costs sublinear 

in n, the # of nodes in the 

tree? Depends how # 

nodes relates to height.



How Tall Can a BST with n Nodes Be?

● Here’s a binary tree with n nodes:

● This tree has height ???.
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…
n nodes



How Tall Can a BST with n Nodes Be?

● Here’s a binary tree with n nodes:

● This tree has height n-1.

● Can we realize this tree as a BST by some sequence of 

insertions?
93

…



How Tall Can a BST with n Nodes Be?

● Insert keys 1..n in order
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How Tall Can a BST with n Nodes Be?

● Insert keys 1..n in order
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How Tall Can a BST with n Nodes Be?

● Insert keys 1..n in order
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How Tall Can a BST with n Nodes Be?

● Insert keys 1..n in order
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Bad News…

● Given the right sequence of insertions, a BST with n nodes can have 

height Θ(n)

● That means that all our BST operations are worst-case Θ(n)

● This is no better in the worst case than a list or array.  In fact, it’s 

worse for some operations (e.g. min/max).
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Can We Overcome 

Worst-Case Θ(n) 

Costs for Tree 

Operations?
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What If Our Trees Were Never Too Tall?

● Defn: a binary tree with n nodes is said to be balanced if it 

has height O(log n).

● Example: a complete binary tree with 2n-1 nodes has 

height n – 1, so is balanced.

● In a balanced BST, all BST ops are worst case O(log n).
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What If Our Trees Were Never Too Tall?

● Defn: a binary tree with n nodes is said to be balanced if it 

has height O(log n).

● Example: a complete binary tree with 2n-1 nodes has 

height n – 1, so is balanced.

● In a balanced BST, all BST ops are worst case O(log n).
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Really, we can write 

Θ(log n) here – all

binary trees have 

height Ω(log n).



Strategy for Balancing Trees

1. Define a structural property P that applies to only some

BSTs

2. Prove that BSTs satisfying property P are balanced

3. Make sure a trivial BST (one node) satisfies P

4. Show how to insert, remove while maintaining P
○ i.e. show that P is an invariant of the BST
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An Example of a Balance Property

● AVL Property

● Described 1962 by Adelson-Velsky and Landis

● A tree T satisfies the AVL property if for each node in T, 

its left and right subtrees differ in height by at most 1.

● Intuitively, prevents very lopsided trees.
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AVL Property for Binary Trees – Formal Defn

● Let H(r) be the height of a binary tree rooted at r

● Defn: T is an AVL tree iff, for every node x in T, one of these is true:

1. x is a leaf.

2. x has one child, which is a leaf.

3. x has two children, and |H(x.right) – H(x.left)| ≤ 1.

104
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AVL Property for Binary Trees – Formal Defn

● Let H(r) be the height of a binary tree rooted at r

● Defn: T is an AVL tree iff, for every node x in T, one of these is true:

1. x is a leaf.

2. x has one child, which is a leaf.

3. x has two children, and |H(x.right) – H(x.left)| ≤ 1.
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Is This an AVL Tree?
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Is This an AVL Tree? NO!
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Is This an AVL Tree?
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Is This an AVL Tree? NO!
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Is This an AVL Tree?
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Is This an AVL Tree? YES!
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Why Are AVL Trees Balanced?

● Intuitively, a tall tree with few nodes is 

“skinny”

● Long path to its deepest leaf cannot 

have many nodes branching off it.

● Skinny trees have subtrees with very 

different heights

● AVL property prevents skinny trees
112



Why Are AVL Trees Balanced?

● Intuitively, a tall tree with few nodes is 

“skinny”

● Long path to its deepest leaf cannot 

have many nodes branching off it.

● Skinny trees have subtrees with very 

different heights

● AVL property prevents skinny trees
113

Let’s formalize this 

idea to prove that an 

AVL tree is balanced.



What is “Skinniest” AVL Tree We Can Build?

● Let N(h) be minimum # of nodes in any AVL tree with 

height h.

● N(0) = 1                          N(1) = 2

● Can we find a formula for N(h) for h > 1?
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What is “Skinniest” AVL Tree We Can Build?

● If tree has height h, root’s tallest subtree has height ???.
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What is “Skinniest” AVL Tree We Can Build?

● If tree has height h, root’s tallest subtree has height h-1.

● By AVL property, other subtree must have height ≥ ???.
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What is “Skinniest” AVL Tree We Can Build?

● If tree has height h, root’s tallest subtree has height h-1.

● By AVL property, other subtree must have height ≥ h-2.

● Both subtrees are also AVL trees.

● Hence, N(h) = N(h-1) + N(h-2) + 1

117

2 subtrees, plus 1

node for root.



What is “Skinniest” AVL Tree We Can Build?

● If tree has height h, root’s tallest subtree has height h-1.

● By AVL property, other subtree must have height ≥ h-2.

● Both subtrees are also AVL trees.

● Hence, N(h) = N(h-1) + N(h-2) + 1

118

Let’s guess a solution 

to recurrence for N(h) 

and check our guess.



Lower Bound on AVL Tree Size vs Height

● Let Φ =
5+1

2
≈ 1.618 . [Yes, the golden ratio again]

● Claim: N(h) ≥ Φh

● → Every AVL tree with height h has ≥ Φh nodes

● → Every AVL tree with n nodes has height ≤ logΦ(n),       

hence is balanced.
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Lower Bound Proof, 1/2

● Claim: N(h) ≥ Φh

● Pf: by induction on h

● Base 1: N(0) = 1 ≥ Φ0

● Base 2: N(1) = 2 ≥ Φ1
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Lower Bound Proof, 2/2

● Ind: N(h) = N(h-1) + N(h-2) + 1

● ≥ N(h-1) + N(h-2)

● ≥ Φh-1 + Φh-2

● = Φh-2 (Φ + 1)

121

Apply inductive

hypothesis.



Lower Bound Proof, 2/2

● Ind: N(h) = N(h-1) + N(h-2) + 1

● ≥ N(h-1) + N(h-2)

● ≥ Φh-1 + Φh-2

● = Φh-2 (Φ + 1)
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Lower Bound Proof, 2/2

● Ind: N(h) = N(h-1) + N(h-2) + 1

● ≥ N(h-1) + N(h-2)

● ≥ Φh-1 + Φh-2

● = Φh-2 (Φ + 1)

● = Φh-2 Φ2

● = Φh.   QED
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Fact:

Φ2 = Φ+1



Next Time

How can we modify BST insertion and deletion to ensure 

that the trees they create are always AVL trees?
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