
Lecture 10:

Ordered

Collections with

Binary Search

Trees

1
These slides include material originally prepared by Dr. Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole.

Announcements

● Lab 11 out next week – balanced binary trees (with coding)

● Exam 2 is Wednesday, April 3rd

○ Same ground rules and procedures as Exam 1 (2-sided crib sheet

and nothing else, Piazza post will specify room location)

○ Will cover material since Exam 1 (Master Method)

■ Lectures/studios 5-10 inclusive

○ Review on Sunday 2-5 pm in Louderman 458

2

Motivation – Limitations of Dictionaries

● We developed hashing to permit efficient dictionaries

○ Insert()

○ Remove()

○ Find()

● But hash tables are unsatisfactory in two ways

1. Worst-case op performance is Θ(n) (only average case is good)

2. Does not adequately represent naturally ordered collections.

3

Ordered Dynamic Set Operations

● Besides the usual dictionary operations, ordered sets support

○ min / max – what is smallest/largest item in collection?

○ iterator – list collection’s items in order from smallest to largest

● See, e.g., Java SortedSet interface

● Many data types are naturally ordered (strings, ID #’s), even if we

don’t always use this fact.

4

Ordered Dynamic Set Operations

● Besides the usual dictionary operations, ordered sets support

○ min / max – what is smallest/largest item in collection?

○ iterator – list the items in the set in order from smallest to largest

● See, e.g., Java SortedSet interface

● Many data types are naturally ordered (strings, ID #’s), even if we

don’t always use this fact.

5

“Dynamic” means that a query of the

set must return the correct answer at

any point during a sequence of

insertions and deletions.

Candidate Implementations?

● Sorted Array

○ Θ(log n) find, O(1) min/max, O(1) iteration/item

○ Θ(n) insert/remove

● Sorted List

○ Much like array, except for Θ(n) find

● (Hash table does not support ordering – must iterate

through all items to find min/max or next item in order)
6

What We Would Like from Our Ordered Sets

● Sub-linear time insert/remove/find

○ (what does sub-linear mean again?)

7

What We Would Like from Our Ordered Sets

● Sub-linear time insert/remove/find

○ (what does sub-linear mean again?)

● Sub-linear time min/max

● Iteration in sub-linear time per element

● All times worst-case (unlike a hash table)

8

How We’ll Get It

● New data structure – binary search tree (BST)

● Can do all operations in time proportional to height of tree

● But height isn’t necessarily sub-linear in size (unlike a heap)

● So we’ll consider how to force BSTs to have small height

9

Binary Trees, Revisited

● A BST is a type of binary tree.

● Tree is made of nodes, each of which

is root of a subtree

● Each node has left and right children,

and a parent (any may be null)

● Unlike heaps, trees used as BSTs

need not be compact.

10

node

left child right child

parent

left subtree right subtree

What Makes a Binary Tree a BST?

● Every node x contains a key value x.key

● Every node satisfies the following invariant (“BST property”):

● For every node y in x’s left subtree, y.key ≤ x.key

● For every node z in x’s right subtree, x.key ≤ z.key

● (If each key in BST is unique, these inequalities are strict <)

11

x

y z

What Makes a Binary Tree a BST?

● Every node x contains a key value x.key

● Every node satisfies the following invariant (“BST property”):

● For every node y in x’s left subtree, y.key ≤ x.key

● For every node z in x’s right subtree, x.key ≤ z.key

● (If each key in BST is unique, these inequalities are strict <)

12

5

? ?

What Makes a Binary Tree a BST?

● Every node x contains a key value x.key

● Every node satisfies the following invariant (“BST property”):

● For every node y in x’s left subtree, y.key ≤ x.key

● For every node z in x’s right subtree, x.key ≤ z.key

● (If each key in BST is unique, these inequalities are strict <)

13

5

2 7

What Makes a Binary Tree a BST?

● Every node x contains a key value x.key

● Every node satisfies the following invariant (“BST property”):

● For every node y in x’s left subtree, y.key ≤ x.key

● For every node z in x’s right subtree, x.key ≤ z.key

● (If each key in BST is unique, these inequalities are strict <)

14

5

5 7

BST Property in Brief

● Node x is ≥ every node in its left subtree

● Node x is ≤ every node in its right subtree

● [Note that this is a different, stronger tree

invariant than heap property]

15

k

≤ k ≥ k

BST Property in Brief

● Node x is ≥ every node in its left subtree

● Node x is ≤ every node in its right subtree

● [Note that this is a different, stronger tree

invariant than heap property]

16

k

≤ k ≥ k

We sometimes talk of

“comparing two nodes”…

we actually mean

comparing their keys.

BST Property in Brief (With Unique Keys)

● Node x is > every node in its left subtree

● Node x is < every node in its right subtree

● [Note that this is a different, stronger tree

invariant than heap property]

17

k

< k > k

Using a BST, How Do We Implement…

● Find?

● Min/Max?

● Insert?

● Iterate?

● Remove?

18

Caveat - Uniqueness

● In what follows, we assume that keys in tree are all unique

● Still possible to have an efficient BST with duplicate keys…

● (E.g. if we must store two records with same key)

● …but it adds complexity to the ops and/or their correctness proofs.

19

Find: Use the BST Property

● Suppose we search tree rooted at node x for key k

● If x.key = k, we are done!

● If x.key > k, search for k in ???

● If x.key < k, search for k in ???

20

Find: Use the BST Property

● Suppose we search tree rooted at node x for key k

● If x.key = k, we are done!

● If x.key > k, search for k in subtree rooted at x.left

● If x.key < k, search for k in subtree rooted at x.right

● (If desired subtree is null, k is not found)

21

Find Examples

22

10

7 13

16

14

5 9

62

3

Find 6?

23

10

7 13

16

14

5 9

62

3

Find 6?

24

10

7 13

16

14

5 9

62

3

Find 6?

25

10

7 13

16

14

5 9

62

3

Find 6?

26

10

7 13

16

14

5 9

62

3

Find 6?

27

10

7 13

16

14

5 9

62

3
Found!

Find 8?

28

10

7 13

16

14

5 9

62

3

Find 8? Not Found!

29

10

7 13

16

14

5 9

62

3

(If it existed, it would be here)

Min and Max

● Thanks to BST property, we can easily find min key in tree…

● Remember, we assume unique keys

● Min node can’t have other nodes in its left subtree

● Min node can’t be in the right subtree of any other node

● So where is it?

30

Min and Max

● Thanks to BST property, we can easily find min key in tree…

● Remember, we assume unique keys

● Min node can’t have other nodes in its left subtree

● Min node can’t be in the right subtree of any other node

● Start at root, go left until no longer possible. Final node is min.

31

Min and Max

● Thanks to BST property, we can easily find min key in tree…

● Remember, we assume unique keys

● Min node can’t have other nodes in its left subtree

● Min node can’t be in the right subtree of any other node

● Start at root, go left until no longer possible. Final node is min.

32

Max is found by “opposite”

rule (keep going right), for

similar reasons.

Min/Max Examples

33

10

7 13

16

14

5 9

62

3

min

max

How to Insert a Key into a BST

● An unsuccessful find() ends at null subtree where node containing key

would be if it existed.

● → Create a new leaf node there and put the key in it!

34

Insert Examples

35

10

7 13

16

14

5 9

62

3

Insert 8

36

10

7 13

16

14

5 9

62

3

Insert 8

37

10

7 13

16

14

5 9

62

3

8 belongs here

Insert 8

38

10

7 13

16

14

5 9

62

3

8

Insert 15

39

10

7 13

16

14

5 9

62

3

8

Insert 15

40

10

7 13

16

14

5 9

62

3

8

15 belongs here

Insert 15

41

10

7 13

16

14

5 9

62

3

8

15

Insert 12

42

10

7 13

16

14

5 9

62

3

8

15

Insert 12

43

10

7 13

16

14

5 9

62

3

8

15

12 belongs here

Insert 12

44

10

7 13

16

14

5 9

62

3

8

15

12

The Story So Far

● Find

● Min/Max

● Insert

● Iterate?

● Remove?

45

Worst-Case Cost of Operations

● Find – might have to walk from root to deepest leaf of tree

● Min/Max – same

● Insert – same

● Iterate?

● Remove?

46

Worst-Case Cost of Operations

● Find – Θ(h) for tree of height h

● Min/Max – same

● Insert – same

● Iterate?

● Remove?

47

And Now, Some

Slightly Less Trivial

Methods

48

Iteration

● As we saw in Lab 7, a collection can provide an iterator

● An iterator for a BST starts out pointing to the min node (by key)

● Each call to iterator.next() must move from current node to next largest

● This operation is called finding the successor of a node

● We write it as “succ(x)” for a node x

49

Where is Successor of Node x?

● If x has a right subtree T’…

● Leftmost (minimum) node z in T’ is > x.

● Every node > x that is not in T’ is > every node in

T’, hence is also > z.

● Conclude that succ(x) = z.

50

x

T’

z

Where is Successor of Node x?

● If x has no right subtree…

● If any node of tree is > x, then x is rightmost

(maximum) node in left subtree T of some node y.

● Every node < y that is not in T is < every node in

T, hence is also < x.

● Conclude that succ(x) = y.

51

x

y

T

How to Compute succ(x)

● If x has a right subtree T’

● return min(T’)

● Else

● follow parent pointers from x until some node y is a right parent

● return y

52

Successor Examples

53

10

7 13

16

14

5 9

62

3

Succ(10)

54

10

7 13

16

14

5 9

62

3

Succ(10) – 10 has a right subtree

55

10

7 13

16

14

5 9

62

3

Succ(10) – min of right subtree of 10 is 13

56

10

7 13

16

14

5 9

62

3

Succ(10) = 13

57

10

7 13

16

14

5 9

62

3

Succ(6)

58

10

7 13

16

14

5 9

62

3

Succ(6) – 6 has no right subtree

59

10

7 13

16

14

5 9

62

3

Succ(6) – Follow parents to first right parent

60

10

7 13

16

14

5 9

62

3

Succ(6) – Follow parents to first right parent

61

10

7 13

16

14

5 9

62

3

Succ(6) = 7

62

10

7 13

16

14

5 9

62

3

Succ(16)

63

10

7 13

16

14

5 9

62

3

Succ(16) – 16 has no right subtree

64

10

7 13

16

14

5 9

62

3

Succ(16) – follow parents to first right parent?

65

10

7 13

16

14

5 9

62

3

Succ(16) does not exist (16 is max!)

66

10

7 13

16

14

5 9

62

3

Worst-Case Cost of Operations

● Find – might have to walk from root to deepest leaf of tree

● Min/Max – same

● Insert – same

● Iterate – might have to walk from root to deepest leaf or vice versa

● Remove?

67

Worst-Case Cost of Operations

● Find – Θ(h) for tree of height h

● Min/Max – same

● Insert – same

● Iterate – same

● Remove?

68

Last But Not Least, Remove(k)

● First, walk down from root to locate node x with key k, as for find().

● Three possibilities for node x to be removed:

69

k

k
k

x is a leaf x has one subtree x has two subtrees

Easy Cases for Removal (Verify BST Property)

● If x is a leaf, removing x does not impact remaining tree at all.

● If x has one subtree, remove x and link subtree’s root to x’s parent.

● (BST property holds between x’s parent and its entire subtree)

70

k

k

Remove(6)

71

10

7 13

16

14

5 9

62

3

Remove(6)

72

10

7 13

16

14

5 9

2

3

Remove(13)

73

10

7 13

16

14

5 9

62

3

Remove(13)

74

10

7

16

14

5 9

62

3

Remove(13)

75

10

7 16

145 9

62

3

Removing a Node With Two Subtrees

● We cannot just delete the node!

● One parent, two subtrees – no place to put one of the subtrees

● Instead, will preserve tree structure by “stealing” key from a subtree

76

k

Removing a Node With Two Subtrees

● Let x be node to be deleted, and let y = succ(x).

● Replace x.key by y.key

● This is safe for BST property – why?

● Now delete duplicate copy of y.key by

removing y

77

k

j

node x

node y = succ(x)

Removing a Node With Two Subtrees

● Let x be node to be deleted, and let y = succ(x).

● Replace x.key by y.key

● This is safe for BST property – why?

● Now delete duplicate copy of y.key by

removing y

78

j

j

node x

node y = succ(x)

Removing a Node With Two Subtrees

● Let x be node to be deleted, and let y = succ(x).

● Replace x.key by y.key

● This is safe for BST property – why?

● Now delete duplicate copy of y.key by

removing y

79

j

j

node x

node y = succ(x)

Remove 5

80

10

7 13

16

14

5 9

62

3

Remove 5

81

10

7 13

16

14

5 9

62

3

succ(5) = 6

Remove 5

82

10

7 13

16

14

6 9

62

3

succ(5) = 6

Remove 5

83

10

7 13

16

14

6 9

2

3

Remove 10

84

10

7 13

16

14

5 9

62

3

Remove 10

85

10

7 13

16

14

5 9

62

3

succ(10) = 13

Remove 10

86

13

7 13

16

14

5 9

62

3

succ(10) = 13

Remove 10

87

13

7 16

145 9

62

3

Sanity Check – Is Recursive Remove Safe?

● If we remove a node with two subtrees…

● Its successor is leftmost node of its right subtree.

● Leftmost node has no left subtree.

● Hence, “recursive” remove always removes node with 0 or

1 subtrees – easy cases!

88

Worst-Case Cost of Operations

● Find – might have to walk from root to deepest leaf of tree

● Min/Max – same

● Insert – same

● Iterate – might have to walk from root to deepest leaf or vice versa

● Remove – might have to walk from root to deepest leaf

89

Worst-Case Costs for BST Operations

● Find – Θ(h) for tree of height h

● Min/Max – Θ(h) for tree of height h

● Insert – Θ(h) for tree of height h

● Iterate – Θ(h) for tree of height h

● Remove – Θ(h) for tree of height h

90

Worst-Case Costs for BST Operations

● Find – Θ(h) for tree of height h

● Min/Max – Θ(h) for tree of height h

● Insert – Θ(h) for tree of height h

● Iterate – Θ(h) for tree of height h

● Remove – Θ(h) for tree of height h

91

Are these costs sublinear

in n, the # of nodes in the

tree? Depends how #

nodes relates to height.

How Tall Can a BST with n Nodes Be?

● Here’s a binary tree with n nodes:

● This tree has height ???.

92

…
n nodes

How Tall Can a BST with n Nodes Be?

● Here’s a binary tree with n nodes:

● This tree has height n-1.

● Can we realize this tree as a BST by some sequence of

insertions?
93

…

How Tall Can a BST with n Nodes Be?

● Insert keys 1..n in order

94

1

How Tall Can a BST with n Nodes Be?

● Insert keys 1..n in order

95

1

2

How Tall Can a BST with n Nodes Be?

● Insert keys 1..n in order

96

1

2

3

How Tall Can a BST with n Nodes Be?

● Insert keys 1..n in order

97

1

2

3

n

…

Bad News…

● Given the right sequence of insertions, a BST with n nodes can have

height Θ(n)

● That means that all our BST operations are worst-case Θ(n)

● This is no better in the worst case than a list or array. In fact, it’s

worse for some operations (e.g. min/max).

98

Can We Overcome

Worst-Case Θ(n)

Costs for Tree

Operations?

99

What If Our Trees Were Never Too Tall?

● Defn: a binary tree with n nodes is said to be balanced if it

has height O(log n).

● Example: a complete binary tree with 2n-1 nodes has

height n – 1, so is balanced.

● In a balanced BST, all BST ops are worst case O(log n).

100

What If Our Trees Were Never Too Tall?

● Defn: a binary tree with n nodes is said to be balanced if it

has height O(log n).

● Example: a complete binary tree with 2n-1 nodes has

height n – 1, so is balanced.

● In a balanced BST, all BST ops are worst case O(log n).

101

Really, we can write

Θ(log n) here – all

binary trees have

height Ω(log n).

Strategy for Balancing Trees

1. Define a structural property P that applies to only some

BSTs

2. Prove that BSTs satisfying property P are balanced

3. Make sure a trivial BST (one node) satisfies P

4. Show how to insert, remove while maintaining P
○ i.e. show that P is an invariant of the BST

102

An Example of a Balance Property

● AVL Property

● Described 1962 by Adelson-Velsky and Landis

● A tree T satisfies the AVL property if for each node in T,

its left and right subtrees differ in height by at most 1.

● Intuitively, prevents very lopsided trees.

103

AVL Property for Binary Trees – Formal Defn

● Let H(r) be the height of a binary tree rooted at r

● Defn: T is an AVL tree iff, for every node x in T, one of these is true:

1. x is a leaf.

2. x has one child, which is a leaf.

3. x has two children, and |H(x.right) – H(x.left)| ≤ 1.

104

h h+1

AVL Property for Binary Trees – Formal Defn

● Let H(r) be the height of a binary tree rooted at r

● Defn: T is an AVL tree iff, for every node x in T, one of these is true:

1. x is a leaf.

2. x has one child, which is a leaf.

3. x has two children, and |H(x.right) – H(x.left)| ≤ 1.

105

hh+1

Is This an AVL Tree?

106

10

7 13

16

14

5 9

62

3

Is This an AVL Tree? NO!

107

10

7 13

16

14

5 9

62

3

C

May not have a node with

one child that is not a leaf.

Is This an AVL Tree?

108

10

7 13

16

14

5 9

62

3

11

Is This an AVL Tree? NO!

109

10

7 13

16

14

5 9

62

3

11

C

Left subtree has height 2;

Right subtree has height 0

Is This an AVL Tree?

110

10

7 13

16

14

5 9

62

11

Is This an AVL Tree? YES!

111

10

7 13

16

14

5 9

62

11

Why Are AVL Trees Balanced?

● Intuitively, a tall tree with few nodes is

“skinny”

● Long path to its deepest leaf cannot

have many nodes branching off it.

● Skinny trees have subtrees with very

different heights

● AVL property prevents skinny trees
112

Why Are AVL Trees Balanced?

● Intuitively, a tall tree with few nodes is

“skinny”

● Long path to its deepest leaf cannot

have many nodes branching off it.

● Skinny trees have subtrees with very

different heights

● AVL property prevents skinny trees
113

Let’s formalize this

idea to prove that an

AVL tree is balanced.

What is “Skinniest” AVL Tree We Can Build?

● Let N(h) be minimum # of nodes in any AVL tree with

height h.

● N(0) = 1 N(1) = 2

● Can we find a formula for N(h) for h > 1?

114

What is “Skinniest” AVL Tree We Can Build?

● If tree has height h, root’s tallest subtree has height ???.

115

What is “Skinniest” AVL Tree We Can Build?

● If tree has height h, root’s tallest subtree has height h-1.

● By AVL property, other subtree must have height ≥ ???.

116

What is “Skinniest” AVL Tree We Can Build?

● If tree has height h, root’s tallest subtree has height h-1.

● By AVL property, other subtree must have height ≥ h-2.

● Both subtrees are also AVL trees.

● Hence, N(h) = N(h-1) + N(h-2) + 1

117

2 subtrees, plus 1

node for root.

What is “Skinniest” AVL Tree We Can Build?

● If tree has height h, root’s tallest subtree has height h-1.

● By AVL property, other subtree must have height ≥ h-2.

● Both subtrees are also AVL trees.

● Hence, N(h) = N(h-1) + N(h-2) + 1

118

Let’s guess a solution

to recurrence for N(h)

and check our guess.

Lower Bound on AVL Tree Size vs Height

● Let Φ =
5+1

2
≈ 1.618 . [Yes, the golden ratio again]

● Claim: N(h) ≥ Φh

● → Every AVL tree with height h has ≥ Φh nodes

● → Every AVL tree with n nodes has height ≤ logΦ(n),

hence is balanced.
119

Lower Bound Proof, 1/2

● Claim: N(h) ≥ Φh

● Pf: by induction on h

● Base 1: N(0) = 1 ≥ Φ0

● Base 2: N(1) = 2 ≥ Φ1

120

Lower Bound Proof, 2/2

● Ind: N(h) = N(h-1) + N(h-2) + 1

● ≥ N(h-1) + N(h-2)

● ≥ Φh-1 + Φh-2

● = Φh-2 (Φ + 1)

121

Apply inductive

hypothesis.

Lower Bound Proof, 2/2

● Ind: N(h) = N(h-1) + N(h-2) + 1

● ≥ N(h-1) + N(h-2)

● ≥ Φh-1 + Φh-2

● = Φh-2 (Φ + 1)

122

Fact:

Φ2 = Φ+1

Lower Bound Proof, 2/2

● Ind: N(h) = N(h-1) + N(h-2) + 1

● ≥ N(h-1) + N(h-2)

● ≥ Φh-1 + Φh-2

● = Φh-2 (Φ + 1)

● = Φh-2 Φ2

● = Φh. QED

123

Fact:

Φ2 = Φ+1

Next Time

How can we modify BST insertion and deletion to ensure

that the trees they create are always AVL trees?

124

