Lecture 1.
Asymptotic
Complexity

These slides include material originally prepared by Dr.Ron Cytron, Dr. Jeremy Buhler,and Dr. Steve Cole. .



Announcements
o TA office hours officially start this week — see web site.

o Lab 1released this Wednesday
o due 2/8 at 11:59 PM

o (work on your own —jt’s a lab)
o There is no coding for this lab, just the written part.

o Please review and follow the eHomework guidelines for this and future
lab writeups. Read the Gradescope turn-in guide at the bottom of the
eHomework guidelines.



Announcements, Cont’d

e If you joined the class on or after last Thursday, 1/17, you must make up
Studio 0 by showing your writeup to a TA in office hours by 1/31

o Seethewebsitefor office hourstimes and locations

e Please check that you have a Gradescope account.
o Those who joined by the first day of class should have gotten an invite email.

o If you did not, or if you cannot see CSE 247, go to https://www.gradescope.com,
create an account if needed, and register for class code
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https://www.gradescope.com/

Things You Saw in Studio O

“Ticks” are a useful way to measure complexity -- count # of times we
reach a specific place in the code.

e Growing array by doubling takes time linear in # of elements added.

e (“Naive approach”took quadratic time!)

e \We can reason aboutthe number of ticks (= running time) of a
program analytically, without actually running it.



Today’s Agenda

o Counting the number of ticks exactly

o Asymptotic complexity

e BIig-O notation — being sloppy, but in a very precise way
e Big-Q notation — the opposite (?) of big-O

e BIg-O notation — how to say "about a constant times f(n)"



How Many Times Do We Tick?

o Let’stake an example from the studio:

public void run(Q) {
for (int 1=0; i < n; ++1) {
i
// Statement below is deemed to take one operation
//
this.value = this.value + 1i;
ticker.tick();

How many times do we call tick()?



How Many Times Do We Tick?

o Let’stake an example from the studio:

public void run(Q) {
for (int 1=0; i < n; ++1) {
i
// Statement below is deemed to take one operation
//
this.value = this.value + 1i;
ticker.tick();

“Once for each value of i in the loop”



How Many Times Do We Tick?

o Let’stake an example from the studio:

public void run(Q) {
for (int 1=0; i < n; ++1) {
i
// Statement below is deemed to take one operation
//
this.value = this.value + 1i;
ticker.tick();

So,for1=0,1,2, ... 7?7?27



How Many Times Do We Tick?

o Let’stake an example from the studio:

public void run(Q) {
for (int 1=0; i < n; ++1) {
i
// Statement below is deemed to take one operation
//
this.value = this.value + 1i;
ticker.tick();

So,for1=0,1,2,...n-1



How Many Times Do We Tick?

o Let’stake an example from the studio:

public void run(Q) {
for (int 1=0; 1 < n; ++1) {
i
// Statement below is deemed to take one operation
//
this.value = this.value + 1i;
ticker.tick();

So,fori=0,1,2,...n-1 (not n, because <)
10



Accounting

e Onetick perloop iteration.

e Totaltickcountis therefore

e Y50 (1)

Greatestvalue of |
in loop

Least value of i in
loop
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Accounting

e Onetick perloop iteration.

e Totaltickcountis therefore

ey (D=m-1)-0+1=n
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Accounting

e Onetick perloop iteration.

e Totaltickcountis therefore
Yl (1D)=mn-1)-0+1=n

Firstrule of counting: aloop fromi=LOto I =HIruns

HI - LO + 1 times
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Let’s Try a Doubly-Nested Loop

e Now consider this code:

public void run(Q) {
for (int 1=0; 1 < n; ++1) {
for (int j=0; j < 1; ++j) {
//
// Statement below takes one operation
this.value = this.value + 1i;
ticker.tick(Q);

}

How many times do we call tick()?
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Let’s Work from the Inside Out

e InnermostlooprunsforjfromO0to... ???

public void run(Q) {
for (int 1=0; 1 < n; ++1) {
for (int j=0; j < 1; ++j) {
//
// Statement below takes one operation
this.value = this.value + 1i;
ticker.tick(Q);
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Let’s Work from the Inside Out

e InnerlooprunsforjfromOto... -1

public void run() {
for (int 1=0; 1 < n; ++1) {

for (int j=0; j < 1; ++j) {
//
// Statement below takes one operation
this.value = this.value + 1i;
ticker.tick(Q);

Hence,wetick (i-1) -0+ 1 =itimes
each timewe executetheinnerloop. 16



Let’s Work from the Inside Out

e OuterlooprunsforifromOto... ???

public void run() {
for (int 1=0; 1 < n; ++1) {

| ticks

17



Let’s Work from the Inside Out

e OQOuterlooprunsforifromOto...n-1

public void run() {
for (int 1=0; 1 < n; ++1) {

| ticks

}

But this time, the number of ticks is different for each 1! "



Accounting

e |ticks perouterloop iteration

e Totaltickcountis therefore
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Accounting

e |ticks perouterloop iteration.

e Totaltickcountis therefore

Remember this
. Z,_l_l i = n(n—-1) from last
i=0 2 time? We'll use it

a lot!
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Accounting

e |ticks perouterloop iteration.

e Totaltickcountis therefore

. _ n(n-1)
2

Second rule of counting: when loops are nested,

Work inside-out and form a summation.
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One More Time

o Instead of Java, let’'s do pseudocode.

for 7 in 1 .. n
tick ()
for k in 0 .. j
tick()
tick()
tick()
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One More Time...

o Instead of Java, let’'s do pseudocode.

e

i

for 7 in 1 .. n=~__\\\\;
tick ()
for k in 0 .. j
tick()

tick()
tick()
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One More Time

o Instead of Java, let’'s do pseudocode.

for 7 in 1 .. n
tick ()

for k in 0 ..
tick ()
tick ()
tick ()

J

Inner loop runs
for k from 0 to |
and ticks
3 times
per iteration

24



One More Time

o Instead of Java, let’'s do pseudocode.

for 7 in 1 .. n
tick ()

for k in 0 ..
tick ()
tick ()
tick ()

J

Inner loop runs
j—0+1=j+1times
and ticks
3 times
per iteration
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One More Time

o Instead of Java, let’'s do pseudocode.

for 7 in 1 .. n
tick ()
3(j+1) ticks

Inner loop runs
j—0+1=j+1times
and ticks
3 times
per iteration

26



One More Time

o Instead of Java, let’'s do pseudocode.

for 7 in 1 .. n
tick ()
3(j+1) ticks

Outer loop runs
forjfrom 1ton
and ticks
?7?7? times
on iteration |

27



One More Time

o Instead of Java, let’'s do pseudocode.

for 7 in 1 .. n
tick ()
3(j+1) ticks

Outer loop runs
forjfrom 1ton
and ticks
1+ 3(+1) = 3j+4 times
on iteration |
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Accounting

e 3jt4ticks per outerloop iteration.

e Totaltickcountis therefore

e Yi=1 (3 +4)
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Accounting

e 3jt4ticks per outerloop iteration.

e Totaltickcountis therefore

P O

PR MRIMDIE - B
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Accounting

e 3jt4ticks per outerloop iteration.

e Totaltickcountis therefore

3n(n+1) _ 3n’+11n

+ 4n =




Do We Really Care?

| 3n’+11n
« Seriously, 5 Calals

. Do we need this much detall to
understand our code’s running time?
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How Do We Actually Use Running Times?

o Predict exact time to complete a task
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How Do We Actually Use Running Times?

o Predict exact time to complete a task
(yeah, we need the precise count for this)
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How Do We Actually Use Running Times?

o« Compare running times of different algorithms
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How Do We Actually Use Running Times?

o« Compare running times of different algorithms

1000 n log n n< 3n?
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How Do We Actually Use Running Times?

o« Compare running times of different algorithms

1000 n log n n< 3n?

Differenceis a constant factor
(solved by using a bigger computer)
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How Do We Actually Use Running Times?

o« Compare running times of different algorithms

1000 n log n n< 3n?

Qualitatively different!
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Desirable Properties of Running Time Estimates

e Distinguish “get a bigger computer” vs “qualitatively different”
- order of growth matters (constant factors don't)
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Desirable Properties of Running Time Estimates

e Distinguish “get a bigger computer” vs “qualitatively different”
- order of growth matters (constant factors don't)

e Ignore transient effects for small input sizes n
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Running time Comparison
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=1000nlogn =n"2




Desirable Properties of Running Time Estimates

e Distinguish “get a bigger computer” vs “qualitatively different”
—> order of growth matters (constant factors don't)

e Ignore transient effects for small input sizes n

- Standard assumption: we care what happens as input
becomes “large” (grows without bound)

- In other words, we care about asymptotic behavior of an

algorithm’s running time!
43
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How do we reason about asymptotic behavior?

Time for Theory!
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Definition of Big-O Notation

e Letf(n), g(n) be positive functions for n > 0.
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Definition of Big-O Notation

e Let f(n), g(n) be positive functions for n > 0.
[e.g. running times!]
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Definition of Big-O Notation

e Let f(n), g(n) be positive functions for n > 0.
[e.g. running times!]

o We say that f(n) = O(g(n)) if there exist constants
c>0,n;>0
such that for all n =2 n,,
f(n)<c-+g(n).
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There exist constants ¢ > 0, n, > 0 such that for all n = n,,
f(n) = c * g(n).

cg(n)

f(n)

n
o

f(n) = 0(g(n))
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There exist constants ¢ > 0, n, > 0 such that for all n = n,,
f(n) = c * g(n).

cg(n)

For small n, f(n) can
behavestrangely if
it wants.

n
o

f(n) = 0(g(n))
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There exist constants ¢ > 0, n, > 0 such that for all n = n,,

f(n) = c * g(n).

cg(n)

But by some
pointng, f(n)
settles down...

f(n) = 0(g(n))
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There exist constants ¢ > 0, n, > 0 such that for all n = n,,
f(n) = c * g(n).

cg(n)

... and it stays
< c g(n) forever
after.

Mo

f(n) = 0(g(n)) 52



Does Big-O Have the Properties We Desire?

o EXxplicitly ignores behavior of functions for small n
(we get to decide what “small” is).

o Allows a constant c in front of g(n) for upper bound.

o Does that make big-O insensitive to constants?
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Big-O Ignores Constants, as Desired

e Lemma:lff(n)=0(g(n)),thenf(n)=0(ag(n))foranya>0.

e Pf:f(n) =0(g(n)) = forsomec>0,n,>0,if n=n,,
f(n) < c g(n).

e Butthen for n = n,,

f(n) < g - ag(n).

e Concludethat f(n) = O(ag(n)). QED
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Big-O Ignores Constants, as Desired

When specifying running
times, never write a constant
inside the O(). Itis
unnecessary.
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Does big-O Match our Intuition?

e Which function grows faster, n or n??
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Does big-O Match our Intuition?

e Which function grows faster, n or n?? [quadratic beats linear]
e Sodoesn=0(n??

o Setc=7???7,n,=7?7?7? [manyoptions here]
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Does big-O Match our Intuition?

e Which function grows faster, n or n?? [quadratic beats linear]
e Sodoesn=0(n??
e Setc=1,n,=1 [manyoptions here]

e Whennz21,is1+*n?22n?
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Does big-O Match our Intuition?

Which function grows faster, n or n?? [quadratic beats linear]
So does n =0(n?)?

Setc=1,n,=1 [manyoptions here]
Whenn=21,is1*n22n?

Yes! — multiply both sides of “n21” by n. QED
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General Strategy for Proving f(n) = O(g(n))

1. Pickc>0,n,>0. [choose to make next steps easier]
2. Write down desired inequality f(n) < c g(n).

3. Prove that the inequality holds whenever n = n,,.
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Another Example

e Does 3n?+ 11n =0(n?)?
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Another Example
e Does 3n?2+ 11n =0(n?)?
o Let’'sproveit.

o Setc=??2?,n,=227?

[what does your intuition say?]
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Another Example

e Does3n?2+11n=0(n%? [whatdoes yourintuitionsay?]
o Let’'sproveit.
e Setc=33,ny=1 [again,manypossiblechoices]

e Forn 21, difference
33n2 — (3n? + 11n) = (11n? — 3n?) + (11n? — 11n) + (11n% - 0) > 0.

Concludethatthe claimistrue. QED
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Generalization of Previous Proof

e Thm:any polynomial of the form s(n) = X%_ga; n/ is O(nk).

e Pf: pick c to be k+1 times the largest (most positive) a;; pick ny = 1.
e Write cn® — s(n) as

k (€ Kk _ ,j)

each term of whichis=0forn=1. QED
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Generalization of Previous Proof

’ When'specifyingrunning
times, never write lower-

order terms inside the O().

It IS unnecessary.
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Generalization of Previous Proof

o Basedonthese two
examples, we can prove

3n2-;11n i O(nz)
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Generalization of Previous Proof

e Thm:any polynomial of the form s(n) = Y*_,a; n/ is O(n).

J=0%J

e Pf: pick c to be k+1 times the largest a;, and pick ny = 1.

e Write cn® —s(n) as
k(£ .k _ .. j)
]=0(k+1n a;n’ ),

each term of whichis=0forn=1. QED

Polynomial terms other than the highest do not
Impact asymptotic complexity!
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One More Example

e D0es 1000 nlog n = 0O(n?)?
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One More Example

e D0es 1000 nlog n = 0O(n?)?

o Setc=7?7??,n,="7???
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One More Example

Does 1000 n log n = O(n?)?
Setc=1000,ny=1
Whenn=1, 1000 n?- 1000 n log n = 1000 > O.

Moreover, this difference only grows with increasingn > 1. QED
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One More Example

e Do0es 1000 nlog n = O(n?)?
e Setc=1000,n,=1
e Whenn=1,1000 n?-1000 nlog n=1000 > 0.

e Moreover, this difference only grows with increasingn > 1. QED

(Oh really? Are you sure?)
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One More Example

e Waell, the derivative of the difference

d
%[1000 n? — 1000 nlogn] = 2000 n — 1000 — 10001logn,

which is > 0 for n = 1. But does it stay that way forn > 17?
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One More Example

e Waell, the derivative of the difference

d
%[1000 n? — 1000 nlogn] = 2000 n — 1000 — 10001logn,

which is > 0 for n = 1. But does it stay that way forn > 17?

e Furthermore,

2
< [1000n? — 1000 nlogn] = 2000 — 1000/n,
which is > 0 for n 2 1. Hence, the derivative remains positive, and so the
difference increases for n 2 1 as claimed.
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Moral

e You can use calculus to show that one function remains greater than
another past a certain point, even if the functions are not algebraic.

e This is often a crucial step in proving f(n) = O(g(n)).

e (Nexttime, we'll use this idea to derive a general test for comparing
the asymptotic behavior of two functions.)

Big-O makes preciseour intuition about when one
function effectively upper-bounds another,ignoring

constant factors and smallinput sizes. 25



Extensions of Big-O
Notation: Q and ©



More Ways to Bound Running Times

e When comparing numbers, we would not be happy if we could say
“x S y”
but not
“x 2 y!! or “x — y”

e Big-Ois analogous to < for functions [upper bound on growth rate]

e What are statements analogous to 2, =?
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More Ways to Bound Running Times

e When comparing numbers, we would not be happy if we could say
“x S y”
but not
“x 2 y!! or “x — y”

e Big-Ois analogous to < for functions [upper bound on growth rate]

e What are statements analogous to 2, =?

Q, 0
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Definition of Big-Q Notation

e Let f(n), g(n) be positive functions for n > 0.
[e.g. running times!]

o We say that f(n) = Q(g(n)) if there exist constants
c>0,n;>0
such that for all n =2 n,,
f(n)=c < g(n).
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Definition of Big-Q Notation

. Q(g(n))

IV
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There exist constants ¢ > 0, n, > 0 such that for all n = n,,
f(n) 2 c » g(n).

f(n)

cg(n)

n
Mo

f(n) = 2(g(n))
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How Do You Prove f(n) = Q(g(n))?

e Lemma:

f(n) = O(g(n)) itt g(n) = Q(i(n))

e SO If we want to prove, say,
n2=Q(n log n),
we just prove
n log n = O(n?).
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(Proof of Lemma)
e If f(n) = O(g(n)), there are c >0, ny> 0 s.t. forn =2 ngy, f(n) < c g(n).
e Setd=1/c. Thenfor n=ngg(n)=df(n).
e Conclude that with constants d, ny, we have proved g(n) = Q(f(n)).

e A similar argument works to prove the other direction of the iff. QED
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Definition of Big-© Notation

e Let f(n), g(n) be positive functions for n > 0.
[e.g. running times!]

o We say that f(n) = ©(g(n)) if there exist constants
C,C,>0,n;>0
such that for all n =2 n,,

Ci*g(n)sf(n)sc, - g(n).
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Definition of Big-© Notation

0 f(n) =0O(g(n))
C1, Co

Cy *g(n) sf(n)sc,+g(n).
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There exist constants c,,c, > 0,n, >0 s.t. forall n =2 n,,
C;*g(n) =f(n) = c,* g(n).

c28(n)

/() Upper and lower
bounds on f(n)
(might not be
same constant)

c18(n)

n

f(n) =0O(gn))
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How Do You Prove f(n) = ©(g(n))?

e Lemma:
f(n) = ©(g(n)) Iff
f(n) = O(g(n)) and f(n) = Q(g(n))

e So If we want to prove, say,
3n? + 11n = O(n?),
we just prove
3n% + 11n = O(n?) and 3n? + 11n = Q(n?)
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How Do You Prove f(n) = ©(g(n))?

e Lemma:
f(n) = ©(g(n)) iff
f(n) = O(g(n)) and f(n) = Q(g(n))

You should be able to prove this lemma from the

definitions of O, QQ, and ©.
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Conclusion (so far)

We now have precise way to bound behavior of fcns
when n gets large, ignoring constant factors.

We can replace ugly precise running times by much
simpler expressions with same asymptotic behavior.

You will see O, Q), and © frequently for rest of 247!
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Next Time...

o Quick, uniform proof strategy for O, QQ, and © statements
e Review of linked lists for Studio 2

o More practice applying asymptotic complexity
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End of Asymptotic
Complexity Part 1

continued next lecture



