Lecture 1.
Asymptotic
Complexity

These slides include material originally prepared by Dr.Ron Cytron, Dr. Jeremy Buhler,and Dr. Steve Cole. .



Announcements
o TA office hours officially start this week — see web site.

o Lab 1released this Wednesday
o due 2/8 at 11:59 PM

o (work on your own —jt’s a lab)
o There is no coding for this lab, just the written part.

o Please review and follow the eHomework guidelines for this and future
lab writeups. Read the Gradescope turn-in guide at the bottom of the
eHomework guidelines.



Announcements, Cont’d

e If you joined the class on or after last Thursday, 1/17, you must make up
Studio 0 by showing your writeup to a TA in office hours by 1/31

o Seethewebsitefor office hourstimes and locations

e Please check that you have a Gradescope account.
o Those who joined by the first day of class should have gotten an invite email.

o If you did not, or if you cannot see CSE 247, go to https://www.gradescope.com,
create an account if needed, and register for class code

M7/DRK3



https://www.gradescope.com/

Things You Saw in Studio O

“Ticks” are a useful way to measure complexity -- count # of times we
reach a specific place in the code.

e Growing array by doubling takes time linear in # of elements added.

e (“Naive approach”took quadratic time!)

e \We can reason aboutthe number of ticks (= running time) of a
program analytically, without actually running it.



Today’s Agenda

o Counting the number of ticks exactly

o Asymptotic complexity

e BIig-O notation — being sloppy, but in a very precise way
e Big-Q notation — the opposite (?) of big-O

e BIg-O notation — how to say "about a constant times f(n)"



How Many Times Do We Tick?

o Let’stake an example from the studio:

public void run(Q) {
for (int 1=0; i < n; ++1) {
i
// Statement below is deemed to take one operation
//
this.value = this.value + 1i;
ticker.tick();

How many times do we call tick()?



How Many Times Do We Tick?

o Let’stake an example from the studio:

public void run(Q) {
for (int 1=0; i < n; ++1) {
i
// Statement below is deemed to take one operation
//
this.value = this.value + 1i;
ticker.tick();

“Once for each value of i in the loop”



How Many Times Do We Tick?

o Let’stake an example from the studio:

public void run(Q) {
for (int 1=0; i < n; ++1) {
i
// Statement below is deemed to take one operation
//
this.value = this.value + 1i;
ticker.tick();

So,for1=0,1,2, ... 7?7?27



How Many Times Do We Tick?

o Let’stake an example from the studio:

public void run(Q) {
for (int 1=0; i < n; ++1) {
i
// Statement below is deemed to take one operation
//
this.value = this.value + 1i;
ticker.tick();

So,for1=0,1,2,...n-1



How Many Times Do We Tick?

o Let’stake an example from the studio:

public void run(Q) {
for (int 1=0; 1 < n; ++1) {
i
// Statement below is deemed to take one operation
//
this.value = this.value + 1i;
ticker.tick();

So,fori=0,1,2,...n-1 (not n, because <)
10



Accounting

e Onetick perloop iteration.

e Totaltickcountis therefore

e Y50 (1)

Greatestvalue of |
in loop

Least value of i in
loop

11



Accounting

e Onetick perloop iteration.

e Totaltickcountis therefore

ey (D=m-1)-0+1=n

12



Accounting

e Onetick perloop iteration.

e Totaltickcountis therefore
Yl (1D)=mn-1)-0+1=n

Firstrule of counting: aloop fromi=LOto I =HIruns

HI - LO + 1 times

13



Let’s Try a Doubly-Nested Loop

e Now consider this code:

public void run(Q) {
for (int 1=0; 1 < n; ++1) {
for (int j=0; j < 1; ++j) {
//
// Statement below takes one operation
this.value = this.value + 1i;
ticker.tick(Q);

}

How many times do we call tick()?

14



Let’s Work from the Inside Out

e InnermostlooprunsforjfromO0to... ???

public void run(Q) {
for (int 1=0; 1 < n; ++1) {
for (int j=0; j < 1; ++j) {
//
// Statement below takes one operation
this.value = this.value + 1i;
ticker.tick(Q);

15



Let’s Work from the Inside Out

e InnerlooprunsforjfromOto... -1

public void run() {
for (int 1=0; 1 < n; ++1) {

for (int j=0; j < 1; ++j) {
//
// Statement below takes one operation
this.value = this.value + 1i;
ticker.tick(Q);

Hence,wetick (i-1) -0+ 1 =itimes
each timewe executetheinnerloop. 16



Let’s Work from the Inside Out

e OuterlooprunsforifromOto... ???

public void run() {
for (int 1=0; 1 < n; ++1) {

| ticks

17



Let’s Work from the Inside Out

e OQOuterlooprunsforifromOto...n-1

public void run() {
for (int 1=0; 1 < n; ++1) {

| ticks

}

But this time, the number of ticks is different for each 1! "



Accounting

e |ticks perouterloop iteration

e Totaltickcountis therefore

19



Accounting

e |ticks perouterloop iteration.

e Totaltickcountis therefore

Remember this
. Z,_l_l i = n(n—-1) from last
i=0 2 time? We'll use it

a lot!

20



Accounting

e |ticks perouterloop iteration.

e Totaltickcountis therefore

. _ n(n-1)
2

Second rule of counting: when loops are nested,

Work inside-out and form a summation.

21



One More Time

o Instead of Java, let’'s do pseudocode.

for 7 in 1 .. n
tick ()
for k in 0 .. j
tick()
tick()
tick()

22



One More Time...

o Instead of Java, let’'s do pseudocode.

e

i

for 7 in 1 .. n=~__\\\\;
tick ()
for k in 0 .. j
tick()

tick()
tick()

23



One More Time

o Instead of Java, let’'s do pseudocode.

for 7 in 1 .. n
tick ()

for k in 0 ..
tick ()
tick ()
tick ()

J

Inner loop runs
for k from 0 to |
and ticks
3 times
per iteration

24



One More Time

o Instead of Java, let’'s do pseudocode.

for 7 in 1 .. n
tick ()

for k in 0 ..
tick ()
tick ()
tick ()

J

Inner loop runs
j—0+1=j+1times
and ticks
3 times
per iteration

25



One More Time

o Instead of Java, let’'s do pseudocode.

for 7 in 1 .. n
tick ()
3(j+1) ticks

Inner loop runs
j—0+1=j+1times
and ticks
3 times
per iteration

26



One More Time

o Instead of Java, let’'s do pseudocode.

for 7 in 1 .. n
tick ()
3(j+1) ticks

Outer loop runs
forjfrom 1ton
and ticks
?7?7? times
on iteration |

27



One More Time

o Instead of Java, let’'s do pseudocode.

for 7 in 1 .. n
tick ()
3(j+1) ticks

Outer loop runs
forjfrom 1ton
and ticks
1+ 3(+1) = 3j+4 times
on iteration |

28



Accounting

e 3jt4ticks per outerloop iteration.

e Totaltickcountis therefore

e Yi=1 (3 +4)

29



Accounting

e 3jt4ticks per outerloop iteration.

e Totaltickcountis therefore

P O

PR MRIMDIE - B

30



Accounting

e 3jt4ticks per outerloop iteration.

e Totaltickcountis therefore

3n(n+1) _ 3n’+11n

+ 4n =




Do We Really Care?

| 3n’+11n
« Seriously, 5 Calals

. Do we need this much detall to
understand our code’s running time?

32



How Do We Actually Use Running Times?

o Predict exact time to complete a task

33



How Do We Actually Use Running Times?

o Predict exact time to complete a task
(yeah, we need the precise count for this)

34



How Do We Actually Use Running Times?

o« Compare running times of different algorithms

35



How Do We Actually Use Running Times?

o« Compare running times of different algorithms

1000 n log n n< 3n?

36



How Do We Actually Use Running Times?

o« Compare running times of different algorithms

1000 n log n n< 3n?

Differenceis a constant factor
(solved by using a bigger computer)

37



How Do We Actually Use Running Times?

o« Compare running times of different algorithms

1000 n log n n< 3n?

Qualitatively different!

38



4 50E+10

4 00E+10

3.50E+10

J.00E+10

2.50E+10

2.00E+10

1.50E+10

1.00E+10

5.00E+0B

0.00E+DD

Running time Comparison

50000

100000 150000

—1000nlogn —n*2

200000

250000 n

39



Desirable Properties of Running Time Estimates

e Distinguish “get a bigger computer” vs “qualitatively different”
- order of growth matters (constant factors don't)

40



Desirable Properties of Running Time Estimates

e Distinguish “get a bigger computer” vs “qualitatively different”
- order of growth matters (constant factors don't)

e Ignore transient effects for small input sizes n

41



Running time Comparison
1.00E+08

f.00E+08

B.0DE+D8

T.O00E+04

6.00E+08

5.00E+04

4.00E+08 /’

J.00E+04

2. 00E+ 08
1.00E+08 :ﬁ
0.00E +00 ..-é:':

i 5000 10000 15000 20000 25000 30000 35000 n

=1000nlogn =n"2




Desirable Properties of Running Time Estimates

e Distinguish “get a bigger computer” vs “qualitatively different”
—> order of growth matters (constant factors don't)

e Ignore transient effects for small input sizes n

- Standard assumption: we care what happens as input
becomes “large” (grows without bound)

- In other words, we care about asymptotic behavior of an

algorithm’s running time!
43



| HE
BIGDATA™D

om

| asvmnmuc complexity.

m p.com

a4



How do we reason about asymptotic behavior?

Time for Theory!

45



Definition of Big-O Notation

e Letf(n), g(n) be positive functions for n > 0.

46



Definition of Big-O Notation

e Let f(n), g(n) be positive functions for n > 0.
[e.g. running times!]

47



Definition of Big-O Notation

e Let f(n), g(n) be positive functions for n > 0.
[e.g. running times!]

o We say that f(n) = O(g(n)) if there exist constants
c>0,n;>0
such that for all n =2 n,,
f(n)<c-+g(n).

48



There exist constants ¢ > 0, n, > 0 such that for all n = n,,
f(n) = c * g(n).

cg(n)

f(n)

n
o

f(n) = 0(g(n))

49



There exist constants ¢ > 0, n, > 0 such that for all n = n,,
f(n) = c * g(n).

cg(n)

For small n, f(n) can
behavestrangely if
it wants.

n
o

f(n) = 0(g(n))

50



There exist constants ¢ > 0, n, > 0 such that for all n = n,,

f(n) = c * g(n).

cg(n)

But by some
pointng, f(n)
settles down...

f(n) = 0(g(n))

51



There exist constants ¢ > 0, n, > 0 such that for all n = n,,
f(n) = c * g(n).

cg(n)

... and it stays
< c g(n) forever
after.

Mo

f(n) = 0(g(n)) 52



Does Big-O Have the Properties We Desire?

o EXxplicitly ignores behavior of functions for small n
(we get to decide what “small” is).

o Allows a constant c in front of g(n) for upper bound.

o Does that make big-O insensitive to constants?

53



Big-O Ignores Constants, as Desired

e Lemma:lff(n)=0(g(n)),thenf(n)=0(ag(n))foranya>0.

e Pf:f(n) =0(g(n)) = forsomec>0,n,>0,if n=n,,
f(n) < c g(n).

e Butthen for n = n,,

f(n) < g - ag(n).

e Concludethat f(n) = O(ag(n)). QED

54



Big-O Ignores Constants, as Desired

When specifying running
times, never write a constant
inside the O(). Itis
unnecessary.

55



Does big-O Match our Intuition?

e Which function grows faster, n or n??

56



Does big-O Match our Intuition?

e Which function grows faster, n or n?? [quadratic beats linear]
e Sodoesn=0(n??

o Setc=7???7,n,=7?7?7? [manyoptions here]

o7



Does big-O Match our Intuition?

e Which function grows faster, n or n?? [quadratic beats linear]
e Sodoesn=0(n??
e Setc=1,n,=1 [manyoptions here]

e Whennz21,is1+*n?22n?

58



Does big-O Match our Intuition?

Which function grows faster, n or n?? [quadratic beats linear]
So does n =0(n?)?

Setc=1,n,=1 [manyoptions here]
Whenn=21,is1*n22n?

Yes! — multiply both sides of “n21” by n. QED

59



General Strategy for Proving f(n) = O(g(n))

1. Pickc>0,n,>0. [choose to make next steps easier]
2. Write down desired inequality f(n) < c g(n).

3. Prove that the inequality holds whenever n = n,,.

60



Another Example

e Does 3n?+ 11n =0(n?)?

61



Another Example
e Does 3n?2+ 11n =0(n?)?
o Let’'sproveit.

o Setc=??2?,n,=227?

[what does your intuition say?]

62



Another Example

e Does3n?2+11n=0(n%? [whatdoes yourintuitionsay?]
o Let’'sproveit.
e Setc=33,ny=1 [again,manypossiblechoices]

e Forn 21, difference
33n2 — (3n? + 11n) = (11n? — 3n?) + (11n? — 11n) + (11n% - 0) > 0.

Concludethatthe claimistrue. QED

63



Generalization of Previous Proof

e Thm:any polynomial of the form s(n) = X%_ga; n/ is O(nk).

e Pf: pick c to be k+1 times the largest (most positive) a;; pick ny = 1.
e Write cn® — s(n) as

k (€ Kk _ ,j)

each term of whichis=0forn=1. QED

64



Generalization of Previous Proof

’ When'specifyingrunning
times, never write lower-

order terms inside the O().

It IS unnecessary.

65



Generalization of Previous Proof

o Basedonthese two
examples, we can prove

3n2-;11n i O(nz)

66



Generalization of Previous Proof

e Thm:any polynomial of the form s(n) = Y*_,a; n/ is O(n).

J=0%J

e Pf: pick c to be k+1 times the largest a;, and pick ny = 1.

e Write cn® —s(n) as
k(£ .k _ .. j)
]=0(k+1n a;n’ ),

each term of whichis=0forn=1. QED

Polynomial terms other than the highest do not
Impact asymptotic complexity!

67



One More Example

e D0es 1000 nlog n = 0O(n?)?

68



4 50E+10

4 00E+10

3.50E+10

J.00E+10

2.50E+10

2.00E+10

1.50E+10

1.00E+10

5.00E+0B

0.00E+DD

Running time Comparison

50000

100000 150000

—1000nlogn —n*2

200000

250000 n

69



One More Example

e D0es 1000 nlog n = 0O(n?)?

o Setc=7?7??,n,="7???

70



One More Example

Does 1000 n log n = O(n?)?
Setc=1000,ny=1
Whenn=1, 1000 n?- 1000 n log n = 1000 > O.

Moreover, this difference only grows with increasingn > 1. QED

71



One More Example

e Do0es 1000 nlog n = O(n?)?
e Setc=1000,n,=1
e Whenn=1,1000 n?-1000 nlog n=1000 > 0.

e Moreover, this difference only grows with increasingn > 1. QED

(Oh really? Are you sure?)

72



One More Example

e Waell, the derivative of the difference

d
%[1000 n? — 1000 nlogn] = 2000 n — 1000 — 10001logn,

which is > 0 for n = 1. But does it stay that way forn > 17?

73



One More Example

e Waell, the derivative of the difference

d
%[1000 n? — 1000 nlogn] = 2000 n — 1000 — 10001logn,

which is > 0 for n = 1. But does it stay that way forn > 17?

e Furthermore,

2
< [1000n? — 1000 nlogn] = 2000 — 1000/n,
which is > 0 for n 2 1. Hence, the derivative remains positive, and so the
difference increases for n 2 1 as claimed.

74



Moral

e You can use calculus to show that one function remains greater than
another past a certain point, even if the functions are not algebraic.

e This is often a crucial step in proving f(n) = O(g(n)).

e (Nexttime, we'll use this idea to derive a general test for comparing
the asymptotic behavior of two functions.)

Big-O makes preciseour intuition about when one
function effectively upper-bounds another,ignoring

constant factors and smallinput sizes. 25



Extensions of Big-O
Notation: Q and ©



More Ways to Bound Running Times

e When comparing numbers, we would not be happy if we could say
“x S y”
but not
“x 2 y!! or “x — y”

e Big-Ois analogous to < for functions [upper bound on growth rate]

e What are statements analogous to 2, =?

77



More Ways to Bound Running Times

e When comparing numbers, we would not be happy if we could say
“x S y”
but not
“x 2 y!! or “x — y”

e Big-Ois analogous to < for functions [upper bound on growth rate]

e What are statements analogous to 2, =?

Q, 0

78



Definition of Big-Q Notation

e Let f(n), g(n) be positive functions for n > 0.
[e.g. running times!]

o We say that f(n) = Q(g(n)) if there exist constants
c>0,n;>0
such that for all n =2 n,,
f(n)=c < g(n).

79



Definition of Big-Q Notation

. Q(g(n))

IV

80



There exist constants ¢ > 0, n, > 0 such that for all n = n,,
f(n) 2 c » g(n).

f(n)

cg(n)

n
Mo

f(n) = 2(g(n))

81



How Do You Prove f(n) = Q(g(n))?

e Lemma:

f(n) = O(g(n)) itt g(n) = Q(i(n))

e SO If we want to prove, say,
n2=Q(n log n),
we just prove
n log n = O(n?).

82



(Proof of Lemma)
e If f(n) = O(g(n)), there are c >0, ny> 0 s.t. forn =2 ngy, f(n) < c g(n).
e Setd=1/c. Thenfor n=ngg(n)=df(n).
e Conclude that with constants d, ny, we have proved g(n) = Q(f(n)).

e A similar argument works to prove the other direction of the iff. QED

83



Definition of Big-© Notation

e Let f(n), g(n) be positive functions for n > 0.
[e.g. running times!]

o We say that f(n) = ©(g(n)) if there exist constants
C,C,>0,n;>0
such that for all n =2 n,,

Ci*g(n)sf(n)sc, - g(n).

84



Definition of Big-© Notation

0 f(n) =0O(g(n))
C1, Co

Cy *g(n) sf(n)sc,+g(n).

85



There exist constants c,,c, > 0,n, >0 s.t. forall n =2 n,,
C;*g(n) =f(n) = c,* g(n).

c28(n)

/() Upper and lower
bounds on f(n)
(might not be
same constant)

c18(n)

n

f(n) =0O(gn))

86



How Do You Prove f(n) = ©(g(n))?

e Lemma:
f(n) = ©(g(n)) Iff
f(n) = O(g(n)) and f(n) = Q(g(n))

e So If we want to prove, say,
3n? + 11n = O(n?),
we just prove
3n% + 11n = O(n?) and 3n? + 11n = Q(n?)

87



How Do You Prove f(n) = ©(g(n))?

e Lemma:
f(n) = ©(g(n)) iff
f(n) = O(g(n)) and f(n) = Q(g(n))

You should be able to prove this lemma from the

definitions of O, QQ, and ©.

88



Conclusion (so far)

We now have precise way to bound behavior of fcns
when n gets large, ignoring constant factors.

We can replace ugly precise running times by much
simpler expressions with same asymptotic behavior.

You will see O, Q), and © frequently for rest of 247!

89



Next Time...

o Quick, uniform proof strategy for O, QQ, and © statements
e Review of linked lists for Studio 2

o More practice applying asymptotic complexity

90



91



End of Asymptotic
Complexity Part 1

continued next lecture



