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Lecture 1:  

Asymptotic 

Complexity

These slides include material originally prepared by Dr.Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole.



Announcements
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○ TA office hours officially start this week – see web site.

○ Lab 1 released this Wednesday

○ due 2/8 at 11:59 PM

○ (work on your own – it’s a lab)

○ There is no coding for this lab, just the written part.

○ Please review and follow the eHomework guidelines for this and future 

lab writeups. Read the Gradescope turn-in guide at the bottom of the 

eHomework guidelines.



Announcements, Cont’d

● If you joined the class on or after last Thursday, 1/17, you must make up 

Studio 0 by showing your writeup to a TA in office hours by 1/31

○ See the website for office hours times and locations

● Please check that you have a Gradescope account.

○ Those who joined by the first day of class should have gotten an invite email.

○ If you did not, or if you cannot see CSE 247, go to https://www.gradescope.com, 

create an account if needed, and register for class code

M7DRK3
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https://www.gradescope.com/


Things You Saw in Studio 0

4

● “Ticks” are a useful way to measure complexity -- count # of times we 

reach a specific place in the code.

● Growing array by doubling takes time linear in # of elements added.

● (“Naïve approach” took quadratic time!)

● We can reason about the number of ticks (≈ running time) of a 

program analytically, without actually running it.



Today’s Agenda

● Counting the number of ticks exactly

● Asymptotic complexity

● Big-O notation – being sloppy, but in a very precise way

● Big-Ω notation – the opposite (?) of big-O

● Big-Θ notation – how to say “about a constant times f(n)”
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How Many Times Do We Tick?

● Let’s take an example from the studio:
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How many times do we call tick()?



How Many Times Do We Tick?

● Let’s take an example from the studio:
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“Once for each value of i in the loop”



How Many Times Do We Tick?

● Let’s take an example from the studio:
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So, for i = 0, 1, 2, … ???



How Many Times Do We Tick?

● Let’s take an example from the studio:

9

So, for i = 0, 1, 2, … n-1



How Many Times Do We Tick?

● Let’s take an example from the studio:
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So, for i = 0, 1, 2, … n-1  (not n, because <)



Accounting

● One tick per loop iteration.

● Total tick count is therefore

● σ𝒊=𝟎
𝒏−𝟏 (𝟏)
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Least value of i in 

loop

Greatest value of i

in loop



Accounting

● One tick per loop iteration.

● Total tick count is therefore

● σ𝒊=𝟎
𝒏−𝟏 𝟏 = 𝒏 − 𝟏 − 𝟎 + 𝟏 = 𝒏
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Accounting

● One tick per loop iteration.

● Total tick count is therefore

● σ𝒊=𝟎
𝒏−𝟏 𝟏 = 𝒏 − 𝟏 − 𝟎 + 𝟏 = 𝒏

13

First rule of counting: a loop from i = LO to i = HI runs

HI – LO + 1 times



Let’s Try a Doubly-Nested Loop

● Now consider this code:

14How many times do we call tick()?



Let’s Work from the Inside Out

● Innermost loop runs for j from 0 to … ???
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Let’s Work from the Inside Out

● Inner loop runs for j from 0 to … i-1
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Hence, we tick (i-1) – 0 + 1 = i times

each time we execute the inner loop.



Let’s Work from the Inside Out

● Outer loop runs for i from 0 to … ???
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i ticks



Let’s Work from the Inside Out

● Outer loop runs for i from 0 to … n-1
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i ticks

But this time, the number of ticks is different for each i!



Accounting

● i ticks per outer loop iteration

● Total tick count is therefore

● σ𝒊=𝟎
𝒏−𝟏 𝒊
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Accounting

● i ticks per outer loop iteration.

● Total tick count is therefore

● σ𝒊=𝟎
𝒏−𝟏 𝒊 =

𝒏(𝒏−𝟏)

𝟐
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Remember this 

from last 

time? We'll use it 

a lot!



Accounting

● i ticks per outer loop iteration.

● Total tick count is therefore

● σ𝒊=𝟎
𝒏−𝟏 𝒊 =

𝒏(𝒏−𝟏)

𝟐
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Second rule of counting: when loops are nested,

Work inside-out and form a summation.



One More Time

● Instead of Java, let’s do pseudocode.
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for j in 1 … n

tick()

for k in 0 … j

tick()

tick()

tick()



One More Time…

● Instead of Java, let’s do pseudocode.
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for j in 1 … n

tick()

for k in 0 … j

tick()

tick()

tick()

“For j from 1 to n, 

inclusive”



One More Time

● Instead of Java, let’s do pseudocode.
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for j in 1 … n

tick()

for k in 0 … j

tick()

tick()

tick()

Inner loop runs 

for k from 0 to j

and ticks 

3 times 

per iteration



One More Time

● Instead of Java, let’s do pseudocode.

25

for j in 1 … n

tick()

for k in 0 … j

tick()

tick()

tick()

Inner loop runs 

j – 0 + 1 = j+1 times

and ticks 

3 times 

per iteration



One More Time

● Instead of Java, let’s do pseudocode.
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for j in 1 … n

tick()

for k = 0 … j

tick()

tick()

tick()

3(j+1) ticks

Inner loop runs 

j – 0 + 1 = j+1 times

and ticks 

3 times 

per iteration



One More Time

● Instead of Java, let’s do pseudocode.
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for j in 1 … n

tick()

for k = 0 … j

tick()

tick()

tick()

3(j+1) ticks

Outer loop runs

for j from 1 to n

and ticks 

??? times

on iteration j



One More Time

● Instead of Java, let’s do pseudocode.
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for j in 1 … n

tick()

for k = 0 … j

tick()

tick()

tick()

3(j+1) ticks

Outer loop runs

for j from 1 to n

and ticks 

1 + 3(j+1) = 3j+4 times 

on iteration j



Accounting

● 3j+4 ticks per outer loop iteration.

● Total tick count is therefore

● σ𝒋=𝟏
𝒏 (𝟑𝒋 + 𝟒)
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Accounting

● 3j+4 ticks per outer loop iteration.

● Total tick count is therefore

● σ𝒋=𝟏
𝒏 (𝟑𝒋 + 𝟒)
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Accounting

● 3j+4 ticks per outer loop iteration.

● Total tick count is therefore
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Do We Really Care?

● Seriously, ???

● Do we need this much detail to 

understand our code’s running time?
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How Do We Actually Use Running Times?

● Predict exact time to complete a task
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How Do We Actually Use Running Times?

● Predict exact time to complete a task

(yeah, we need the precise count for this)
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How Do We Actually Use Running Times?

● Predict exact time to complete a task

(yeah, we need the precise count for this)

● Compare running times of different algorithms
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How Do We Actually Use Running Times?

● Predict exact time to complete a task

(yeah, we need the precise count for this)

● Compare running times of different algorithms

36

1000 n log n n2 3n2



How Do We Actually Use Running Times?

● Predict exact time to complete a task

(yeah, we need the precise count for this)

● Compare running times of different algorithms
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1000 n log n n2 3n2

Difference is a constant factor

(solved by using a bigger computer)



How Do We Actually Use Running Times?

● Predict exact time to complete a task

(yeah, we need the precise count for this)

● Compare running times of different algorithms
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1000 n log n n2 3n2

Qualitatively different!
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n



Desirable Properties of Running Time Estimates

● Distinguish “get a bigger computer” vs “qualitatively different” 

→ order of growth matters (constant factors don’t)
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Desirable Properties of Running Time Estimates

● Distinguish “get a bigger computer” vs “qualitatively different” 

→ order of growth matters (constant factors don’t)

● Ignore transient effects for small input sizes n
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42

n



Desirable Properties of Running Time Estimates

● Distinguish “get a bigger computer” vs “qualitatively different” 

→ order of growth matters (constant factors don’t)

● Ignore transient effects for small input sizes n

○ Standard assumption: we care what happens as input 

becomes “large” (grows without bound)

○ In other words, we care about asymptotic behavior of an 

algorithm’s running time!
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Time for Theory!

How do we reason about asymptotic behavior?



Definition of Big-O Notation

● Let f(n), g(n) be positive functions for n > 0.
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Definition of Big-O Notation

● Let f(n), g(n) be positive functions for n > 0.

[e.g. running times!]
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Definition of Big-O Notation

● Let f(n), g(n) be positive functions for n > 0.

[e.g. running times!]

● We say that f(n) = O(g(n)) if there exist constants 

c > 0, n0 > 0

such that for all n ≥ n0,

f(n) ≤ c • g(n).
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There exist constants c > 0, n0 > 0  such that for all n ≥ n0,

f(n) ≤ c • g(n).
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For small n, f(n) can 

behave strangely if 
it wants.

There exist constants c > 0, n0 > 0  such that for all n ≥ n0,

f(n) ≤ c • g(n).
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But by some 

point n0, f(n)  
settles down…

There exist constants c > 0, n0 > 0  such that for all n ≥ n0,

f(n) ≤ c • g(n).
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… and it stays  

≤ c g(n) forever 
after.

There exist constants c > 0, n0 > 0  such that for all n ≥ n0,

f(n) ≤ c • g(n).



Does Big-O Have the Properties We Desire?

● Explicitly ignores behavior of functions for small n

(we get to decide what “small” is).

● Allows a constant c in front of g(n) for upper bound.

● Does that make big-O insensitive to constants?
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Big-O Ignores Constants, as Desired

● Lemma: If f(n) = O(g(n)), then f(n) = O(a g(n)) for any a > 0 .

● Pf: f(n) = O(g(n)) → for some c > 0, n0 > 0, if n ≥ n0,

f(n) ≤ c g(n).

● But then for n ≥ n0,

f(n) ≤
𝒄

𝒂
• a g(n).

● Conclude that f(n) = O(a g(n)).  QED
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Big-O Ignores Constants, as Desired

● Lemma: If f(n) = O(g(n)), then f(n) = O(a g(n)) for any a > 0 .

● Pf: f(n) = O(g(n)) → for some c > 0, n0 > 0, if n ≥ n0,

f(n) ≤ c g(n).

● But then for n ≥ n0,

f(n) ≤
𝒄

𝒂
• a g(n).

● Conclude that f(n) = O(a g(n)).  QED
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When specifying running 

times, never write a constant 

inside the O().  It is 

unnecessary.



Does big-O Match our Intuition?

● Which function grows faster, n or n2?
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Does big-O Match our Intuition?

● Which function grows faster, n or n2? [quadratic beats linear]

● So does n = O(n2)?

● Set c = ???, n0 = ???   [many options here]
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Does big-O Match our Intuition?

● Which function grows faster, n or n2? [quadratic beats linear]

● So does n = O(n2)?

● Set c = 1, n0 = 1   [many options here]

● When n ≥ 1, is 1 • n2 ≥ n?
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Does big-O Match our Intuition?

● Which function grows faster, n or n2? [quadratic beats linear]

● So does n = O(n2)?

● Set c = 1, n0 = 1   [many options here]

● When n ≥ 1, is 1 • n2 ≥ n?

● Yes! – multiply both sides of “n ≥ 1” by n.  QED
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General Strategy for Proving f(n) = O(g(n))

1. Pick c > 0, n0 > 0.      [choose to make next steps easier]

2. Write down desired inequality f(n) ≤ c g(n).

3. Prove that the inequality holds whenever n ≥ n0.
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Another Example

● Does 3n2 + 11n = O(n2)?
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Another Example

● Does 3n2 + 11n = O(n2)?     [what does your intuition say?]

● Let’s prove it.

● Set c = ???, n0 = ???
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Another Example

● Does 3n2 + 11n = O(n2)?     [what does your intuition say?]

● Let’s prove it.

● Set c = 33, n0 = 1 [again, many possible choices]

● For n ≥ 1, difference 

𝟑𝟑𝒏𝟐− 𝟑𝒏𝟐+ 𝟏𝟏𝒏 = 𝟏𝟏𝒏𝟐− 𝟑𝒏𝟐 + 𝟏𝟏𝒏𝟐− 𝟏𝟏𝒏 + 𝟏𝟏𝒏𝟐− 𝟎 > 𝟎.

Conclude that the claim is true.  QED
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Generalization of Previous Proof

● Thm: any polynomial of the form 𝑠 𝑛 = σ𝑗=0
𝑘 𝑎𝑗 𝑛

𝑗 is O(nk).

● Pf: pick c to be k+1 times the largest (most positive) aj; pick n0 = 1.

● Write 𝑐𝑛𝑘 − 𝑠 𝑛 as 

σ𝑗=0
𝑘 𝑐

𝑘+1
𝑛𝑘 − 𝑎𝑗𝑛

𝑗 , 

each term of which is ≥ 0 for n ≥ 1.  QED
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Generalization of Previous Proof

● Thm: any polynomial of the form 𝑠 𝑛 = σ𝑗=0
𝑘 𝑎𝑗 𝑛

𝑗 is O(nk).

● Pf: pick c to be k+1 times the largest aj, and pick n0 = 1.

● Write 𝑐𝑛𝑘 − 𝑠 𝑛 as 

σ𝑗=0
𝑘 𝑐

𝑘+1
𝑛𝑘 − 𝑎𝑗𝑛

𝑗 , 

each term of which is ≥ 0 for n ≥ 1.  QED
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When specifying running 

times, never write lower-

order terms inside the O().    

It is unnecessary.



Generalization of Previous Proof

● Thm: any polynomial of the form 𝑠 𝑛 = σ𝑗=0
𝑘 𝑎𝑗 𝑛

𝑗 is O(nk).

● Pf: pick c to be k+1 times the largest aj, and pick n0 = 1.

● Write 𝑐𝑛𝑘 − 𝑠 𝑛 as 

σ𝑗=0
𝑘 𝑐

𝑘+1
𝑛𝑘 − 𝑎𝑗𝑛

𝑗 , 

each term of which is ≥ 0 for n ≥ 1.  QED

66

Based on these two 

examples, we can prove



Generalization of Previous Proof

● Thm: any polynomial of the form 𝑠 𝑛 = σ𝑗=0
𝑘 𝑎𝑗 𝑛

𝑗 is O(nk).

● Pf: pick c to be k+1 times the largest aj, and pick n0 = 1.

● Write 𝑐𝑛𝑘 − 𝑠 𝑛 as 

σ𝑗=0
𝑘 𝑐

𝑘+1
𝑛𝑘 − 𝑎𝑗𝑛

𝑗 , 

each term of which is ≥ 0 for n ≥ 1.  QED
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Polynomial terms other than the highest do not 

impact asymptotic complexity!



One More Example

● Does 1000 n log n = O(n2)?
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n



One More Example

● Does 1000 n log n = O(n2)?

● Set c = ???, n0 = ???
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One More Example

● Does 1000 n log n = O(n2)?

● Set c = 1000, n0 = 1

● When n = 1, 1000 n2 – 1000 n log n = 1000 > 0.

● Moreover, this difference only grows with increasing n > 1.  QED
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One More Example

● Does 1000 n log n = O(n2)?

● Set c = 1000, n0 = 1

● When n = 1, 1000 n2 – 1000 n log n = 1000 > 0.

● Moreover, this difference only grows with increasing n > 1.  QED
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(Oh really?  Are you sure?)



One More Example

● Well, the derivative of the difference

which is > 0 for n = 1.  But does it stay that way for n > 1?
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One More Example

● Well, the derivative of the difference

which is > 0 for n = 1.  But does it stay that way for n > 1?

● Furthermore,

𝑑2

𝑑𝑛2
[1000𝑛2 −1000 𝑛 log 𝑛] = 2000− 1000/𝑛,

which is > 0 for n ≥ 1.  Hence, the derivative remains positive, and so the 

difference increases for n ≥ 1 as claimed.
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Moral

● You can use calculus to show that one function remains greater than 

another past a certain point, even if the functions are not algebraic.

● This is often a crucial step in proving f(n) = O(g(n)).

● (Next time, we’ll use this idea to derive a general test for comparing 

the asymptotic behavior of two functions.)

75

Big-O makes precise our intuition about when one 

function effectively upper-bounds another, ignoring 

constant factors and small input sizes.
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Extensions of Big-O 

Notation: Ω and Θ



More Ways to Bound Running Times

● When comparing numbers, we would not be happy if we could say 

“x ≤ y” 

but not 

“x ≥ y” or “x = y”

● Big-O is analogous to ≤ for functions  [upper bound on growth rate]

● What are statements analogous to ≥, =?
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More Ways to Bound Running Times

● When comparing numbers, we would not be happy if we could say 

“x ≤ y” 

but not 

“x ≥ y” or “x = y”

● Big-O is analogous to ≤ for functions  [upper bound on growth rate]

● What are statements analogous to ≥, =?
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Ω, Θ



Definition of Big-Ω Notation

● Let f(n), g(n) be positive functions for n > 0.

[e.g. running times!]

● We say that f(n) = Ω(g(n)) if there exist constants 

c > 0, n0 > 0

such that for all n ≥ n0,

f(n) ≥ c • g(n).
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Definition of Big-Ω Notation

● Let f(n), g(n) be positive functions for n > 0.

[e.g. running times!]

● We say that f(n) = Ω(g(n)) if there exist constants 

c > 0, n0 > 0

such that for all n ≥ n0,

f(n) ≥ c • g(n).
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There exist constants c > 0, n0 > 0  such that for all n ≥ n0,

f(n) ≥ c • g(n).



How Do You Prove f(n) = Ω(g(n))?

● Lemma:

f(n) = O(g(n)) iff g(n) = Ω(f(n))

● So if we want to prove, say,  

n2 = Ω(n log n), 

we just prove

n log n = O(n2).
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(Proof of Lemma)

● If f(n) = O(g(n)), there are c > 0, n0 > 0 s.t. for n ≥ n0, f(n) ≤ c g(n).

● Set d = 1/c.  Then for  n ≥ n0, g(n) ≥ d f(n).

● Conclude that with constants d, n0, we have proved g(n) = Ω(f(n)).

● A similar argument works to prove the other direction of the iff. QED
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Definition of Big-Θ Notation

● Let f(n), g(n) be positive functions for n > 0.

[e.g. running times!]

● We say that f(n) = Θ(g(n)) if there exist constants 

c1, c2 > 0, n0 > 0

such that for all n ≥ n0,

c1 • g(n) ≤ f(n) ≤ c2 • g(n).
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Definition of Big-Θ Notation

● Let f(n), g(n) be positive functions for n > 0.

[e.g. running times!]

● We say that f(n) = Θ(g(n)) if there exist constants 

c1, c2 > 0, n0 > 0

such that for all n ≥ n0,

c1 • g(n) ≤ f(n) ≤ c2 • g(n).
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There exist constants c1,c2 > 0, n0 > 0  s.t. for all n ≥ n0,

c1 • g(n) ≤ f(n) ≤ c2 • g(n).

Upper and lower

bounds on f(n)

(might not be 

same constant)



How Do You Prove f(n) = Θ(g(n))?

● Lemma:

f(n) = Θ(g(n)) iff

f(n) = O(g(n)) and f(n) = Ω(g(n))

● So if we want to prove, say,  

3n2 + 11n = Θ(n2), 

we just prove

3n2 + 11n = O(n2) and 3n2 + 11n = Ω(n2) 
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How Do You Prove f(n) = Θ(g(n))?

● Lemma:

f(n) = Θ(g(n)) iff

f(n) = O(g(n)) and f(n) = Ω(g(n))

● So if we want to prove, say,  

3n2 + 7 = Θ(n2), 

we just prove

3n2 + 7 = O(n2) and 3n2 + 7 = Ω(n2) 
88

You should be able to prove this lemma from the 

definitions of O, Ω, and Θ.



Conclusion (so far)

● We now have precise way to bound behavior of fcns

when n gets large, ignoring constant factors.

● We can replace ugly precise running times by much 

simpler expressions with same asymptotic behavior.

● You will see O, Ω, and Θ frequently for rest of 247!
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Next Time…

● Quick, uniform proof strategy for O, Ω, and Θ statements

● Review of linked lists for Studio 2

● More practice applying asymptotic complexity
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End of Asymptotic 

Complexity Part 1
continued next lecture
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