CSE 247 Data Structures and Algorithms Spring Semester 2019

Lab 6 Instructions
Assigned: 2/27/2019 Due Date: 3/8/2019

Part 1

For each of the following two recurrences, construct a recursion tree and use it to solve the recurrence. Your

solution should include
e a sketch of the tree;

e a chart with columns for the depth, number of nodes, work per node, and work per level at each level
of the tree;

e a summation giving the total work of the recurrence; and
e a closed-form asymptotic solution to the recurrence.

You may assume for simplicity that the input size n is a power of b, the denominator of the size in the
recursive term, and that 7'(1) = d for some constant d.

1. T(n) = 4T(n/3) + n?
2. T(n) = 9T (n/3) +n?

Now, for each of the following recurrences, what (if any) asymptotic solution does the Master Method
give? You should use the extended version of the Master Theorem (found on Wikipedia) that we referenced
in studio. If this version of the Master Theorem gives no solution, say so — in which case you do not need
to solve the recurrence. Show your work: what are a and b, and what test did you do to determine which
case, if any, you are in?

7. T(n) =14 Togn
8. T(n) = 11T (Z) + 3nloer 1!
9. T(n) = 10T (%) +ntloglogn



Part 11

While HeapSort (as we saw in Studio 6) is more amenable than MergeSort to an in-place implementation,

MergeSort has its own advantages. For this problem, suppose you want to perform MergeSort on a really

huge array A. The array is so big that it doesn’t fit in your computer’s memory and has to be stored in the

cloud.

More specifically, assume that our computer has enough memory to hold 3b elements, for some constant

b, but A has size n much greater than b. We can call read(X, i, B) to read a chunk of b elements from an

array X (in the cloud) starting at index i into a local array B. Similarly, we can call write(C, X, i) to

write a chunk of b elements stored in local array C' to a cloud array X starting at index 1.

Here’s a proposed (incomplete!) implementation of the merge operation that merges cloud arrays X and
Y into cloud array Z. The code uses local arrays A, B, and C, each of size b, to cache X, Y, and Z. For
simplicity, we assume that the input arrays X and Y have sizes a multiple of b, and that reading past the

end of either X or Y returns values oo as in the studio. “mod” is the integer modulo operator (% in Java).
MERGE(X, Y, Z)

10.

11.

12.

13.

10
7«0
k<0
READ(X, 0, A)
READ(Y, 0, B)
while A[i mod b] < co or B[j mod b] < co do
u < A[i mod 0]
v <— B[j mod b)
C[k mod b] = min(u,v)
if u<wo
FOO
else
BAR
k++
if kmodb=0
WRITE(C, Z, k — b)

Supply blocks of pseudocode to replace the lines “FOO” and “BAR” to complete the implementation of
the merge operation. Consider which parts of the regular merge algorithm are missing, and when/how
to fetch more data from the cloud.

Exactly how many times must the merge function call each of read and write to merge two arrays
of size n/2 into an array of size n, assuming that n/2 is divisible by b7 (Hint: Beware off-by-1 errors
when thinking about how many elements must be examined!)

What is the total number of cloud read and write operations performed by MergeSort to sort an array
A of size n stored in the cloud? Give an asymptotic answer in terms of n, the number of elements in
A, and b, the chunk size. How does this cost compare to the asymptotic cost of merge-sorting an array
of size n held entirely in your computer’s memory?

Why might MergeSort be preferable to HeapSort in the cloud sorting model, where the cost is based
on the number of chunk reads and writes?



Part 111

Consider the problem we studied in Studio 5: searching a sorted array A[l..n| for the leftmost occurrence

of a query value z. Recall that the binary search algorithm solves this problem and returns the index of the

element in the array if it is present, or “not found” if it is not present. Binary search is one algorithm for

this problem, but is it the fastest possible?

14.

15.

16.

17.

How many different outcomes does the search problem have for an array of size n? How did you arrive
at this number?

As for sorting, we will use the comparison model of computation, but this time the only comparisons
permitted are of the form “is A[i] < x?”, where z is the query value. How many different outcomes

can such a comparison have?

Sketch a decision tree for solving this problem in this model on arrays of size 4, using the tree notation
shown in the example from Lecture 6. Your tree must exactly match the sequence of comparisons
performed by the (corrected!) binary search code at the end of Studio 5, Part B. Include only compar-

7

isons of A[i] against x for some 7. (You can treat “=" as another permitted comparison when building

your tree.)

Using similar decision-tree reasoning to what we used for sort, derive an asymptotic lower bound on
the cost of any algorithm for searching a sorted array in the comparison model. Justify your answer.



Part IV

In Lecture 6, we sketched the radiz sort algorithm for sorting an array of n d-digit integers, with each digit
in base k, in linear time O(d(n + k)). The basic algorithm is as follows:

for j=1..d do
sort the input stably by each element’s jth least-significant digit

The sort we used in each pass through the loop was Counting Sort, but any stable sort will work (albeit
perhaps with different overall complexity).

We tried this algorithm and saw that it worked on an example. Your job is to prove inductively that this
algorithm works in general. The class notes suggest proving the following loop invariant: after j passes
through the loop, the input is sorted according to the integers formed by each element’s j least-significant
digits.

18. State and prove a suitable base case for the proof.

19. Now state and prove an inductive case for the proof. You may assume that the per-digit sort used in
each iteration is (1) correct and (2) stable.

20. Why does the invariant imply that the radix sort as a whole is correct?



