
1. Design a 2 bit up/down counter with reset using the FPGA circuit below.

There are 4 inputs and 2 outputs for the circuit. Since the CLB LUT's have only 3
inputs, the largest truth table size for the circuit is 8 entries. However, there are two
LUT's in the FPGA. What would normally be a 4 variable truth table must be split into
two 3 variable truth tables. The first truth table implements an up/down counter without
reset. The state diagram is below. The second LUT implements the reset.

UP S1 S0 D1 D0

0 0 0 1 1

0 0 1 0 0

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 1

1 1 1 0 0

RESET D1 D0 N1 N0

0 0 0 0 0

0 0 1 0 1

0 1 0 1 0

0 1 1 1 1

1 0 0 0 0

1 0 1 0 0

1 1 0 0 0

1 1 1 0 0

The switch matrix is set so the Reset signal is routed to the a2 input of the second LUT.
T D0 and D1 output of the first LUT is routed to the a0 and a1 input of the second LUT.
The flip-flops in the first LUT are bypassed. The flip-flops in the second LUT are used.

2. Using the 3 instruction processor, with 3 additional instructions for multiply, divide,
and subtract, write the code segment that calculates a set of terms in the cosine and sine
function in the Taylor series from problem 1. Your code must calculate variables for use
the next time through the code. As an example, if you are calculating X2/2! and X3/3!
the next time through your code it will calculate X4/4! and X5/5!. You should NOT write
instructions that change the flow of the program (no jmp instructions). Assume the ALU
from the processor does floating point arithmetic. See the last page of the exam for
instruction mnemonics and a processor diagram.

Part A. List name, meaning, and location of constants and variables you will need in
memory and the register file. Write these as comments. A comment starts with // and
goes until the end of the line. It is possible a location may have multiple meanings in
your code. If you need a constant, you may assume the constant is in data memory or
the register file as long as your code doesn't overwrite it.

// examples
// R[0] is used for A.
// D[0] is used for B.
// R[15] is -1.

Part B. Write your code. (hint: Use comments in your code to help the grader
understand what you are doing).

Instruction mnemonic Description

Mov Ra, d RF[a] = D[d]

Mov d, Ra D[d] = RF[a]

Add Ra, Rb, Rc RF[a] = RF[b] + RF[c]

Sub Ra, Rb, Rc RF[a] = RF[b] - RF[c]

Mult Ra, Rb, Rc RF[a] = RF[b] * RF[c]

Div Ra, Rb, Rc RF[a] = RF[b] / RF[c]

PC
clr up

16
IR

Id

16

16

Idatardaddr

Controller

Control unit Datapath

RF_W_wr
RF_Rp_addr

RF_Rq_addr

RF_Rq_rd

RF_Rp_rd

RF_W_addr

D_addr 8

D_rd

D_wr

RF_s

alu_s0

addr D

rd
wr

256x16

16x16
RF

16-bit
2x1

W_data R_data

Rp_data Rq_data

W_data
W_addr

W_wr
Rp_addr
Rp_rd
Rq_addr
Rq_rd

0

16

16

16

1616

16

s
1

A B
s0 ALU

4

4

4

PC_clr
PC_inc

I_rd IR_ld

3. Map the following into the provided CLB and Switch Matrix. Design a 2-bit gray
code counter with count enable and reset. A gray code counter is a counter where only
one bit may change when incrementing to the next count or rolling over.

4. Using the following FPGA with 4 CLB's, design a shift register with the maximum
amount of delay possible from input signal Sin to output signal Sout (25 points).

5. Using the eight-instruction processor (a six-instruction processor with 2 additional
instructions for multiply and divide) write assembly code to calculate the equation
below. The register file is in an unknown state. Assume the ALU from the processor
does floating point arithmetic. If you need a floating point constant, assume that it is in
data memory. You must show the address location of constants, variables, and result in
data memory. The instruction mnemonics and a processor diagram are at the end of the
exam. (25 points).

X=1.0−N∗(X∗Y−X∗Z)/(X−Y)
2

6. Design a new instruction for the six-instruction processor that performs a jump if
RF[rb] is greater than RF[rc]. Draw a new FSM (you may draw the FSM changes on the
last sheet), draw new diagrams or describe changes for the datapath and control unit (25
points).

Six-instruction processor

Instruction mnemonic Description

Mov Ra, d RF[a] = D[d]

Mov d, Ra D[d] = RF[a]

Add Ra, Rb, Rc RF[a] = RF[b] + RF[c]

Sub Ra, Rb, Rc RF[a] = RF[b] - RF[c]

Mov Ra, #C RF[a] = C

JMPZ Ra, offset PC = PC + offset if RF[a] == 0

Eight-instruction processor

Instruction mnemonic Description

Mov Ra, d RF[a] = D[d]

Mov d, Ra D[d] = RF[a]

Add Ra, Rb, Rc RF[a] = RF[b] + RF[c]

Sub Ra, Rb, Rc RF[a] = RF[b] - RF[c]

Mov Ra, #C RF[a] = C

JMPZ Ra, offset PC = PC + offset if RF[a] == 0

Mult Ra, Rb, Rc RF[a] = RF[b] * RF[c]

Div Ra, Rb, Rc RF[a] = RF[b] / RF[c]

