
Sequential Logic

Design:

Controllers

Controller Design,

Flip Flop Timing

Copyright (c) 2012 Sean Key

Standard Controller Architecture

� A circuit that
implements a FSM is
referred to as a
controller
� A controller is made

up of
� Combinational Logic

� Calculate next state

� Calculate outputs

� State Registers

Next State

Logic

M

E

M

O

R

y

inputs

outputs

Controller

Output Logic

Controller Design Process

1. Capture FSM behavior
� Create a state diagram to describe the intended behavior

2. Convert to a Circuit
1. Set up the standard architecture

� Choose the width of the of the state registers
� Determine number of inputs and outputs for the combinational

logic
� # circuit inputs
� # of state bits

2. Encode the states
� Assign unique binary numbers to each state

3. Translate the state diagram into a truth table for the
combinational logic.
� Order the truth table with state bits first to make it easier to follow

4. Implement the combinational logic from the truth table

Guidelines for Encoding States

� Intelligent selecting of state encodings can simplify the design
and/or make it easier to understand and debug.

� Suggested Guidelines:
1. Choose an initial code that can be easily forced by a reset (I,e. 000)

2. Minimize the number of state bits that change between transitions.

3. Maximize the number of state bits that don’t change in a group of
related transitions.

4. Exploit symmetries in the design
� If there are two groups of similar transitions, they should have similar

encodings.

5. If there are unused states, choose the best subset to meet the
previous goals.

6. Decompose state variables into individual bits or fields, where each
field has a well defined meaning with respect to circuit outputs.

7. Consider using more than the minimum number of state variables to
make a decomposed assignment possible.

Controller Design Example:

Sequence Detector

1. Capture the desired behavior
� Use the FSM from last lecture.

0/

F=0

1/

F=0

1-0/

F=0

1-0-1/

F=0

1-0-1-1

F=1

init

X = 0

X = 1

X = 1

X = 0

X = 1 X = 1

X = 0

X = 0

X = 0

X = 1

Controller Design Example:

Sequence Detector

2. Convert to a circuit.

1. Set up standard architecture

� 5 states � Need at least 3 state bits

� 1 output, F

� 1 input, X

2. Encode the states

State Bit Encoding

0 000

1 001

1-0 010

1-0-1 011

1-0-1-1 100

Controller Design Example:

Sequence Detector
2. Convert to a circuit

3. Convert the FSM to a
truth table.

Note: The X’s in the truth table
indicate that we don’t care
about the value.

i.e. it can be either 0 or 1
without effecting our function.

S2 S1 S0 X F N2 N1 N0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 0

0 0 1 1 0 0 0 1

0 1 0 0 0 0 0 0

0 1 0 1 0 0 1 1

0 1 1 0 0 0 1 0

0 1 1 1 0 1 0 0

1 0 0 0 1 0 1 0

1 0 0 1 1 0 0 1

1 0 1 0 X X X X

1 0 1 1 X X X X

1 1 0 0 X X X X

1 1 0 1 X X X X

1 1 1 0 X X X X

1 1 1 1 X X X X

Controller Design Example:

Sequence Detector
2. Convert to a circuit

4. Design a circuit that
implements the logic from the
truth table.

F = S2•S1’•S0’•X + S2•S1’•S0’•X’

= S2•S1’•S0’

N2 = S2’•S1•S0•X

N1 = S2’•S1’•S0•X’ + S2’•S1•S0’•X +
S2’•S1•S0’•X’ + S2•S1’•S0’•X’

N0 = S2’•S1’•S0’•X + S2’•S1’•S0•X +
S2’•S1•S0’•X + S2•S1’•S0’•X

N0 S0

S1

S2
AND4

NOT NOT

NOT

N2

F

NOT

N1

X

clk

AND3

AND4

AND4

AND4

AND4

OR4

OR4

AND4

AND4

AND4

AND4

D Q

QN
D_FF

D Q

QN
D_FF

D Q

QN
D_FF

Reverse Engineering a Circuit

� A FSM can be reverse engineered from a
circuit

1. Determine excitation functions from the
circuit.

2. Complete a truth table using the excitation
functions.

3. Create a FSM from the truth table.
� Use generic state names if the operation of the

FSM isn’t immediately apparent.

Reverse Engineering Example

� Reverse Engineer the following circuit

D Q

QN
D_FF

D Q

QN
D_FF

AND3

AND3

AND3

AND3

OR

OR

X

clk

S1

S1_N

S2

S2_N

NOT

Bi-stable Elements

� All bit storage elements are bi-stable.
� Can stably hold two values: 0 or 1

� However, there is actually a third state.
� Consider the simplest bi-stable element

NOT

NOT

Vin1

Vin2

 Vout1

 Vout2

Simple Bi-stable Response

If Q is low, Q_L is high and vice
versa. Since there are no inputs,
the state will be held forever.

Vout1 = T(Vin1) = Vin2

Vout2 = T(Vin2) = Vin1

Vin1 = Vout2

= T(Vin2)

= T(Vout1)

= T(T(Vin1))

Each spot where the two graphs
cross is stable. A small amount of
noise can push it out of stability.

Note that there are 3 stable points!

Vout1 =

Vin2

Vout2 =

Vin1

Stable

Stable

metastable

Metastability

� The stable point in the center of the curve is
known as metastable
� Only slightly stable

� Small amounts of noise cause the outputs to rapidly
converge on the truly stable points.

� Because of metastability, it is important to drive

a signal beyond the linear range of the inverter

� Means we have timing requirements for driving gates

Metastability Example

� Assume the circuit is at
the metastable point and
apply a small amount of
noise to reduce Vin1.
� Increases Vout1 = Vin2

� Which decreases Vout2 =
Vin2

� Which increases Vout1 =
Vin2

� Which repeats until Vin2 is
HIGH and Vin1 is LOW.

� This can take longer than a
clock cycle!

Vout1 =

Vin2

Vout2 =

Vin1

Stable

Stable

metastable

Latch & Flip Flop

Timing Requirements

� For flip flops to operate properly, timing
constraints must be met
� Setup Time (tsetup)

� Minimum amount of time a signal level must be present
before the active clock edge.

� Hold Time (thold)
� Minimum amount of time signal level must be present after

the active clock edge.

� These are properties of a particular gate based on
how it is design. The designer will provide these
values.

� Latches also have a minimum pulse width.

Sequential Circuit Timing

tclk

clk

tsetup tsetup

thold
thold

combinational

output

flip-flop

output

Determining Clock Frequency

� Remember that frequency, f = 1 / T

�Higher frequencies mean that you can do more

work in less time.

�Higher frequencies mean shorter clock periods.

�Shorter periods mean that you have less time to

accomplish your task.

�The smallest period (and highest frequency) is

constrained by your circuit’s critical path.

� The longest delay path from a register output or circuit

input to a register input.

Example: Minimal Clock

Frequency
� Using the following propagation delays, what is the critical path of the following circuit?

� Tpdff = 3 ns

� Tpd,AND = 1.5 ns

� Tpd,OR = 2 ns

� Tpd,XOR = 2.5 ns

� Tpd,NOT = 1 ns

� Tsetup = 2 ns

� Thold = 1 ns

� What is the fastest clock frequency at which this circuit can operate?

clk

IN D Q

QN

D_FF

D Q

QN

D_FF

XOR

AND

AND

NOT

OR

Sequential Timing Margins

� Timing margins indicate how much “slop” we have in our timing
requirements.
� Well designed systems have positive, non-zero margins

� Allows for unexpected timing errors

� Negative margins may lead to metastability.

� Setup-time margin = tclk – tcomb(max) – tsetup – tpd,ff(max)

� Hold-time margin = tffpd(min) + tcomb(min) – thold

� tffpd is almost always larger than thold, so designers rarely evaluate the
hold time margin

� Setup-time margins are evaluated for the circuit’s critical path, the
longest delay path in the circuit to a flip flop input.

Sequential Circuit Timing

tclk

clk

tsetup tsetup

thold
thold

combinational

output

flip-flop

output
tffpd

tcomb

Setup-time

margin

Hold-time

margin

Timing Diagrams in Sequential

Circuits

� Timing diagrams are done the same as

with combinational logic, but you must

evaluate the circuit for each clock cycle.

Sequential Timing Diagram

Example
� Evaluate the following timing diagram

� Use ideal timing

� Assume setup and hold times have been met

D Q

QN
D_FF

D Q

QN
D_FF

AND3

AND3

OR

OR

X

clk

S1

S1_N

S2

S2_N

NOT

AND3

AND3

X

clk

S1

S2

Sequential Timing Diagram

Example
� Evaluate the following timing diagram

� Repeat the previous example incorporating delays in the timing.
� tclk = 15ns,

� tpd,AND = tpd,OR = 3 ns

� tffpd = 1.5 ns

� tsetup = 3 ns, thold = 2 ns

D Q

QN
D_FF

D Q

QN
D_FF

AND3

AND3

OR

OR

X

clk

S1

S1_N

S2

S2_N

NOT

AND3

AND3

X

clk

S1

S2

Synchronous vs. Asynchronous

� A synchronous circuit is one where all elements
operate using the same clock
� All registers in a circuit can only store a value at the

same clock edge.

� An asynchronous circuit is one where there is no
clock, or there are two or more clocks of different
frequencies.
� Asynchronous circuits must account for metastability

because there is no guarantee that setup or hold
times will be met.

� Asynchronous inputs need to be synchronized.

Impediments to Synchronous

Design

� Clock Skew

� The difference between the arrival times of a
clock edge at different devices/gates

� Subtracts from the hold-time margin
� Hold-time margin = tffpd(min) + tcomb(min) – thold – tskew(max)

� Can be caused by
� Long paths

� Gated clocks

� Clock skew can cause incorrect values to be
sampled, or even metastability!

Clock Skew Example

IN

CLOCKD

CLOCK

Incorrect

correct

Q1

Q2

Impediments to Synchronous

Design

� Asynchronous Inputs

� The input is not in sync with the clock of the

synchronous circuit

� Will undoubtedly cause metastability

� The input must be synchronized.

Synchronizer

� A synchronizer is a flip flop that samples the

asynchronous input before it is used by a

synchronous circuit.

�Won’t the synchronizer suffer form metastability?

� YES! However, it provides time for the output to settle

before it is sampled by the synchronous circuit.

� The more flip flops in series, the more time metastable

inputs have to settle.

Synchronizer Failure

� Failure is said to occur if a synchronizer output is

sampled when still in a metastable state.

� To avoid metastability

� Wait “long enough” before sampling the

synchronizer output.

� The output must settle within the Resolution

Time

� tr = tclk – tcomb – tsetup

� So, what is a good Resolution Time?

Mean Time Between Failures

(MTBF)
� MTBF is a measure of the mean time between failures caused by

metastability

� MTBF(tr) = exp(tr/ԏ) / (T0 * f * a)
� Tr – Resolution Time, must be greater than the flip flop propagation

delay.

� T0 & ԏ -- constants that depend on the electrical characteristics of the
flip flop.

� In our examples, these will be given to you.

� f – frequency of the flip flop clock.

� a – the number of asyncronous input changes per second

� An MTBF of 100 years or more isn’t unreasonable!

� To improve MTBF
� Use better flip flops

� Slow down the clock (more time to resolve)

MTBF Example

� What resolution time is required to ensure a
synchronizer with two flip flops doesn’t experience a
failure for 100 years, on average. Use the following
parameters:

� ԏ = 1.5 nano seconds

� T0 = 0.4 seconds

� f = 10 MHz

� A = 10 KHz

100*365*24*60*60 = exp(tr/1.5) / (0.4 * 107 * 104)

tr = 69.43 ns

Reliable Synchronizers

� To make a reliable synchronizer,
methods of lengthening the
resolution time, tr, must be
devised

� For a system with the simplest
synchronizer, the best tr can be is
� tr = tclk – tsetup

� We will discuss two ways to
increase tr:
� N-cycle synchronizer

� The synchronizer’s clock
frequency is smaller than the
synchronous system.

� tr = n*clk – tsetup

� Limited by clock skew at higher
frequencies

� Cascading synchronizer
� Adding more flip flops adds more

resolution time

� tr = n*(clk – tsetup)

D Q D Q

Divide-by-N

counter

Synchronous

System

meta sync-inasync

clk

N-cycle Synchronizer

D Q D Q

Synchronous

System

meta1async

clk

Cascading Synchronizer

D Q D QmetaN-1 sync-in

meta2

