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Standard Controller Architecture

� A circuit that 
implements a FSM is 
referred to as a 
controller
� A controller is made 

up of
� Combinational Logic

� Calculate next state

� Calculate outputs

� State Registers
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Controller Design Process

1. Capture FSM behavior
� Create a state diagram to describe the intended behavior

2. Convert to a Circuit
1. Set up the standard architecture

� Choose the width of the of the state registers
� Determine number of inputs and outputs for the combinational 

logic
� # circuit inputs
� # of state bits

2. Encode the states
� Assign unique binary numbers to each state

3. Translate the state diagram into a truth table for the 
combinational logic.
� Order the truth table with state bits first to make it easier to follow

4. Implement the combinational logic from the truth table



Guidelines for Encoding States

� Intelligent selecting of state encodings can simplify the design
and/or make it easier to understand and debug.

� Suggested Guidelines:
1. Choose an initial code that can be easily forced by a reset (I,e. 000)

2. Minimize the number of state bits that change between transitions.

3. Maximize the number of state bits that don’t change in a group of 
related transitions.

4. Exploit symmetries in the design
� If there are two groups of similar transitions, they should have similar 

encodings.

5. If there are unused states, choose the best subset to meet the 
previous goals.

6. Decompose state variables into individual bits or fields, where each 
field has a well defined meaning with respect to circuit outputs.

7. Consider using more than the minimum number of state variables to 
make a decomposed assignment possible.



Controller Design Example:

Sequence Detector

1. Capture the desired behavior
� Use the FSM from last lecture.
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Controller Design Example:

Sequence Detector

2. Convert to a circuit.

1. Set up standard architecture

� 5 states � Need at least 3 state bits

� 1 output, F

� 1 input, X

2. Encode the states

State Bit Encoding

0 000

1 001

1-0 010

1-0-1 011

1-0-1-1 100



Controller Design Example:

Sequence Detector
2. Convert to a circuit

3. Convert the FSM to a 
truth table.

Note: The X’s in the truth table 
indicate that we don’t care 
about the value.

i.e. it can be either 0 or 1 
without effecting our function.

S2 S1 S0 X F N2 N1 N0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 0

0 0 1 1 0 0 0 1

0 1 0 0 0 0 0 0

0 1 0 1 0 0 1 1

0 1 1 0 0 0 1 0

0 1 1 1 0 1 0 0

1 0 0 0 1 0 1 0

1 0 0 1 1 0 0 1

1 0 1 0 X X X X

1 0 1 1 X X X X

1 1 0 0 X X X X

1 1 0 1 X X X X

1 1 1 0 X X X X

1 1 1 1 X X X X



Controller Design Example:

Sequence Detector
2. Convert to a circuit

4. Design a circuit that 
implements the logic from the 
truth table.

F = S2•S1’•S0’•X + S2•S1’•S0’•X’

= S2•S1’•S0’

N2 = S2’•S1•S0•X 

N1 = S2’•S1’•S0•X’ + S2’•S1•S0’•X + 
S2’•S1•S0’•X’ + S2•S1’•S0’•X’

N0 = S2’•S1’•S0’•X + S2’•S1’•S0•X + 
S2’•S1•S0’•X + S2•S1’•S0’•X 
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Reverse Engineering a Circuit

� A FSM can be reverse engineered from a 
circuit

1. Determine excitation functions  from the 
circuit.

2. Complete a truth table using the excitation 
functions.

3. Create a FSM from the truth table.
� Use generic state names if the operation of the 

FSM isn’t immediately apparent.



Reverse Engineering Example

� Reverse Engineer the following circuit
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Bi-stable Elements

� All bit storage elements are bi-stable.
� Can stably hold two values: 0 or 1

� However, there is actually a third state.
� Consider the simplest bi-stable element

NOT
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 Vout2



Simple Bi-stable Response

If Q is low, Q_L is high and vice 
versa.  Since there are no inputs, 
the state will be held forever.

Vout1 = T( Vin1 ) = Vin2

Vout2 = T( Vin2 ) = Vin1

Vin1 = Vout2

= T( Vin2 )

= T( Vout1 )

= T( T( Vin1 ) )

Each spot where the two graphs 
cross is stable.  A small amount of 
noise can push it out of stability.

Note that there are 3 stable points!

Vout1 = 

Vin2

Vout2 = 

Vin1

Stable

Stable

metastable



Metastability

� The stable point in the center of the curve is 
known as metastable
� Only slightly stable

� Small amounts of noise cause the outputs to rapidly 
converge on the truly stable points.

� Because of metastability, it is important to drive 

a signal beyond the linear range of the inverter

� Means we have timing requirements for driving gates



Metastability Example

� Assume the circuit is at 
the metastable point and 
apply a small amount of 
noise to reduce Vin1.
� Increases Vout1 = Vin2

� Which decreases Vout2 = 
Vin2

� Which increases Vout1 = 
Vin2

� Which repeats until Vin2 is 
HIGH and Vin1 is LOW.

� This can take longer than a 
clock cycle!

Vout1 = 
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Latch & Flip Flop 

Timing Requirements

� For flip flops to operate properly, timing 
constraints must be met
� Setup Time (tsetup)

� Minimum amount of time a signal level must be present 
before the active clock edge.

� Hold Time (thold)
� Minimum amount of time signal level must be present after 

the active clock edge.

� These are properties of a particular gate based on 
how it is design.  The designer will provide these 
values.

� Latches also have a minimum pulse width.



Sequential Circuit Timing
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Determining Clock Frequency

� Remember that frequency, f = 1 / T

�Higher frequencies mean that you can do more 

work in less time.

�Higher frequencies mean shorter clock periods.

�Shorter periods mean that you have less time to 

accomplish your task.

�The smallest period (and highest frequency) is 

constrained by your circuit’s critical path.

� The longest delay path from a register output or circuit 

input to a register input. 



Example: Minimal Clock 

Frequency
� Using the following propagation delays, what is the critical path of the following circuit?

� Tpdff = 3 ns

� Tpd,AND = 1.5 ns

� Tpd,OR = 2 ns

� Tpd,XOR = 2.5 ns

� Tpd,NOT = 1 ns

� Tsetup = 2 ns

� Thold = 1 ns 

� What is the fastest clock frequency at which this circuit can operate?
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Sequential Timing Margins

� Timing margins indicate how much “slop” we have in our timing 
requirements.
� Well designed systems have positive, non-zero margins

� Allows for unexpected timing errors

� Negative margins may lead to metastability.

� Setup-time margin = tclk – tcomb(max) – tsetup – tpd,ff(max)

� Hold-time margin = tffpd(min) + tcomb(min) – thold

� tffpd is almost always larger than thold, so designers rarely evaluate the 
hold time margin

� Setup-time margins are evaluated for the circuit’s critical path, the 
longest delay path in the circuit to a flip flop input.



Sequential Circuit Timing
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Timing Diagrams in Sequential 

Circuits

� Timing diagrams are done the same as 

with combinational logic, but you must 

evaluate the circuit for each clock cycle.



Sequential Timing Diagram 

Example
� Evaluate the following timing diagram 

� Use ideal timing

� Assume setup and hold times have been met
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Sequential Timing Diagram 

Example
� Evaluate the following timing diagram 

� Repeat the previous example incorporating delays in the timing.
� tclk = 15ns, 

� tpd,AND = tpd,OR = 3 ns

� tffpd = 1.5 ns

� tsetup = 3 ns, thold = 2 ns 
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Synchronous vs. Asynchronous

� A synchronous circuit is one where all elements 
operate using the same clock
� All registers in a circuit can only store a value at the 

same clock edge.

� An asynchronous circuit is one where there is no 
clock, or there are two or more clocks of different 
frequencies.
� Asynchronous circuits must account for metastability

because there is no guarantee that setup or hold 
times will be met.

� Asynchronous inputs need to be synchronized.



Impediments to Synchronous 

Design

� Clock Skew

� The difference between the arrival times of a 
clock edge at different devices/gates

� Subtracts from the hold-time margin
� Hold-time margin = tffpd(min) + tcomb(min) – thold – tskew(max)

� Can be caused by
� Long paths

� Gated clocks

� Clock skew can cause incorrect values to be 
sampled, or even metastability!



Clock Skew Example
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Impediments to Synchronous 

Design

� Asynchronous Inputs

� The input is not in sync with the clock of the 

synchronous circuit

� Will undoubtedly cause metastability

� The input must be synchronized.



Synchronizer

� A synchronizer is a flip flop that samples the 

asynchronous input before it is used by a 

synchronous circuit.

�Won’t the synchronizer suffer form metastability?

� YES!  However, it provides time for the output to settle 

before it is sampled by the synchronous circuit.

� The more flip flops in series, the more time metastable

inputs have to settle.



Synchronizer Failure

� Failure is said to occur if a synchronizer output is 

sampled when still in a metastable state.

� To avoid metastability

� Wait “long enough” before sampling the 

synchronizer output.

� The output must settle within the Resolution 

Time

� tr = tclk – tcomb – tsetup

� So, what is a good Resolution Time?



Mean Time Between Failures 

(MTBF)
� MTBF is a measure of the mean time between failures caused by 

metastability

� MTBF(tr) = exp(tr/ԏ) / (T0 * f * a)
� Tr – Resolution Time, must be greater than the flip flop propagation

delay.

� T0 & ԏ -- constants that depend on the electrical characteristics of the 
flip flop.

� In our examples, these will be given to you.

� f – frequency of the flip flop clock.

� a – the number of asyncronous input changes per second

� An MTBF of 100 years or more isn’t unreasonable!

� To improve MTBF
� Use better flip flops

� Slow down the clock (more time to resolve)



MTBF Example

� What resolution time is required to ensure a 
synchronizer with two flip flops doesn’t experience a 
failure for 100 years, on average.  Use the following 
parameters:

� ԏ = 1.5 nano seconds

� T0 = 0.4 seconds

� f = 10 MHz

� A = 10 KHz

100*365*24*60*60 = exp(tr/1.5) / (0.4 * 107 * 104)

tr = 69.43 ns



Reliable Synchronizers

� To make a reliable synchronizer, 
methods of lengthening the 
resolution time, tr, must be 
devised

� For a system with the simplest 
synchronizer, the best tr can be is 
� tr = tclk – tsetup

� We will discuss two ways to 
increase tr:
� N-cycle synchronizer

� The synchronizer’s clock 
frequency is smaller than the 
synchronous system.

� tr = n*clk – tsetup

� Limited by clock skew at higher 
frequencies

� Cascading synchronizer
� Adding more flip flops adds more 

resolution time

� tr = n*(clk – tsetup)
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