Examination Number 2

Answer all questions. Questions have equal weight.

1. Let \(\vec{v} \) be the vector field

\[
\vec{v} = (ax^2 - bx) \hat{i} + (y + z) \hat{j} + (z + y - bx) \hat{k}
\]

(a) For what values of \(a \) and \(b \) will all line integrals be independent of path?
(b) For these values of \(a \) and \(b \) find a potential function \(u \) for \(\vec{v} \) (i.e. \(\vec{v} = \nabla u \)).
(c) Evaluate

\[
\int_{A(0,0,0)}^{B(1,1,1)} \vec{v} \cdot d\vec{r}
\]

2. \(w(x, y, z) = 2x^2 + y^2 + xz \) is a scalar field

(a) What is the value of \(w \) at \(P(1, 2, 0) \)?
(b) Find the magnitude and direction of the greatest rate of change of \(w \) at \(P \).
(c) Find the equation of the plane tangent to \(w(x, y, z) = w(1, 2, 0) \) at \(P \).
(d) Find a direction \(\hat{u} \) such that the derivative of \(w \) at \(P \) in this direction is \((1/2) \) the maximum rate of change of \(w \) at \(P \).

3. Let \(S \) be the parabolic surface \(z = y^2 \). \(S_1 \) is the part of \(S \) cut off by the elliptic cylinder

\[
(x/2)^2 + y^2 = 1
\]

Compute

\[
\int \int_{S_1} \vec{n} \cdot \vec{v} \ dA \quad \text{where} \quad \vec{v} = y \hat{j} + x \hat{k}
\]

4. Find all eigenvalues and eigenfunctions.

\[
\text{ODE: } t \frac{d^2 y}{dx^2} - \frac{dy}{dx} + 4\lambda t^3 y = 0.
\]

\(\text{BC's: } y(0) = 0, \ y(1) = 0. \)

Hint: Let \(x = t^2 \)

State the orthogonality property of the eigenfunctions.
\(F = (x^2 - yz) \mathbf{i} + (y + z) \mathbf{j} + (y + z - 6x) \mathbf{k} \)

\[
\nabla \times F = \begin{vmatrix} i & j & k \\ 2x & y + z & 2 \\ 2y - 6x & y + z & 0 \end{vmatrix} = \mathbf{a} (1 - 1) + \mathbf{b} (6 - 6) + \mathbf{c} (2) = 0
\]

\(\nabla \times F = 0 \) for all values of \(x, y, z \)

\(\frac{\partial F_1}{\partial y} = x - y \Rightarrow \nabla (x, y, z) = x^3 - 6x^2 + 8 \)

\(\frac{\partial F_2}{\partial x} = y + z \Rightarrow \nabla (x, y, z) = y + z + 2 \)

\(\frac{\partial F_3}{\partial y} < \frac{\partial F_2}{\partial x} \Rightarrow \nabla (x, y, z) = \frac{y + z + 2}{2} \)

\(\nabla (x, y, z) = x^3 - 6x^2 + 8 + y + z + \frac{y + z + 2}{2} \)

\(\nabla (x, y, z) = x^3 - 6x^2 + 8 + y + z + \frac{y + z + 2}{2} \) potential function

\[I = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} x^3 - 6x^2 + 8 + y + z + \frac{y + z + 2}{2} \end{bmatrix} = 0 - 4 + \frac{1}{2} + 1 + k - k = \frac{1}{2}
\]

\(w(1, 2, 0) = 3^2 + 4^2 + 4 \) \(P(1, 2, 0) \)

\(w(1, 2, 0) = 2 + 4 = 6 \)

\(\mathbf{w} = (4x + 2y) \mathbf{i} + (x - \frac{z}{2}) \mathbf{j} + (x + y + z) \mathbf{k} \)

\[\mathbf{w} = (4x + 2y) \mathbf{i} + (x - \frac{z}{2}) \mathbf{j} + (x + y + z) \mathbf{k} \]

\[|\mathbf{w}| = \sqrt{32} \] magnitude of greatest rate of flow

\[\nabla \mathbf{w} = \frac{4\mathbf{i} + 2\mathbf{j} + \mathbf{k}}{\sqrt{32}} \]

\(\mathbf{R} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k} \) point on tangent plane

\(\mathbf{P}_0 = 2 \mathbf{i} + \mathbf{j} \) point of tangency

\[\mathbf{R} \cdot \nabla \mathbf{w} \bigg|_{\mathbf{R} = \mathbf{P}_0} = \mathbf{R} \cdot \nabla \mathbf{w} (\mathbf{P}) = 0 \]

\[\nabla \mathbf{w} (\mathbf{P}) = \frac{4\mathbf{i} + 2\mathbf{j} + \mathbf{k}}{\sqrt{32}} \]

\(-4x + 2y + z = 0 \) \(-4x + 2y + z = 0 \) equation of tangent plane

\(\mathbf{u} = \mathbf{u}_1 + \mathbf{u}_2 + \mathbf{u}_3 \) \(\mathbf{u}_1 + \mathbf{u}_2 + \mathbf{u}_3 = 0 \) and \(\mathbf{u}_1 \cdot \mathbf{u}_2 = 1 \) arbitrary

\[\mathbf{u} = \mathbf{u}_1 + \mathbf{u}_2 + \mathbf{u}_3 \] \(\mathbf{u}_1 + \mathbf{u}_2 + \mathbf{u}_3 = 0 \) with arbitrary

\[2 \mathbf{F} = \nabla \mathbf{w} (\mathbf{P}) \cdot \mathbf{u} = \frac{1}{2} |\mathbf{w}| \]

\[\frac{\partial y}{\partial x} = \frac{\mathbf{u}_1 + \mathbf{u}_2}{\mathbf{u}_3} \]

\[\frac{\partial y}{\partial x} = \frac{\mathbf{u}_1 + \mathbf{u}_2}{\mathbf{u}_3} \] leads to a quadratic \(\frac{y^2}{2} + \frac{z^2}{3} \)
3. \[S: \quad z = y^2 \]

S is the part of \(S \) cut off by the elliptic cylinder \(\left(\frac{x}{2} \right)^2 + z^2 = 1 \).

Compute \(I = \int \int_S \vec{v} \cdot \vec{n} \, dA \) where \(\vec{n} = y \hat{j} + x \hat{k} \)

on \(S \): \[\vec{v} = x \hat{i} + y \hat{j} + z \hat{k} \]

\[\vec{v}_x = \hat{i} \]

\[\vec{v}_y = 1 + 2y \hat{k} \]

\[\vec{n} = \vec{v}_x \times \vec{v}_y = \begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 2y \\ 0 & 0 & 1 \end{vmatrix} = (2y) \hat{k} \]

\[\vec{n} \cdot \vec{v} \, dA = \vec{n} \cdot \left(x \hat{i} + y \hat{j} + z \hat{k} \right) \, dA = \int \int_S (2y) \, dA = 2 \int \int_S dA \]

\[\vec{v} = x \hat{c} \cos \theta \quad x = 2r \cos \phi \]

\[y = r \sin \theta \quad y = r \sin \phi \]

\[I = \int \int_S \left(-2r^4 \cos^2 \theta + 2r \cos \theta \right) \, dA \]

\[I = \frac{2\pi}{3} \int \int_S \left(-2r^4 \cos^2 \theta + 2r \cos \theta \right) \, dA \]

\[I = \frac{2\pi}{3} \int_0^1 \int_0^1 \left(-2r^4 \cos^2 \theta + 2r \cos \theta \right) \, dr \, d\theta \]

\[I = \frac{2\pi}{3} \int_0^1 \left[-2r^5 \cos^2 \theta + 2r \sin \theta \right]_0^1 \, d\theta \]

\[I = \frac{2\pi}{3} \int_0^1 \left(-2 \cos^2 \theta + 2 \sin \theta \right) \, d\theta \]

\[I = \frac{2\pi}{3} \left[-2 \sin 2\theta + 2 \cos \theta \right]_0^1 \]

\[I = \frac{2\pi}{3} \left(-2 + 2 \right) \]

\[I = \frac{2\pi}{3} \]

\[\frac{\partial^2 y}{\partial x^2} + \frac{\partial^2 y}{\partial x \partial y} = 0 \]

\[8E \A: \quad \frac{\partial^2 y}{\partial x^2} + \frac{\partial^2 y}{\partial x \partial y} = 0 \]

\[\frac{\partial y}{\partial x} = 0 \quad \frac{\partial y}{\partial y} = 0 \]

\[y(x) = A x + B \]

\[y(1) = 0 \]

\[y(2) = 0 \]

\[y(0) = A \]

\[y(1) = B \]

\[y(2) = 0 \]

\[y''(x) = 0 \]

\[y''(x) = 0 \]

\[y'''(x) = 0 \]

\[y''''(x) = 0 \]

\[y''''(x) = 0 \]

\[y'''(x) = 0 \]

\[y''(x) = 0 \]

\[y'(x) = 0 \]

\[y(x) = A x + B \]

\[y''(x) = 0 \]

\[y'''(x) = 0 \]

\[y''''(x) = 0 \]

\[y''''(x) = 0 \]

\[y'''(x) = 0 \]

\[y''(x) = 0 \]

\[y'(x) = 0 \]

\[y(x) = A x + B \]

\[y''(x) = 0 \]

\[y'''(x) = 0 \]

\[y''''(x) = 0 \]

\[y'''(x) = 0 \]

\[y''(x) = 0 \]

\[y'(x) = 0 \]

\[y(x) = A x + B \]

\[y''(x) = 0 \]

\[y'''(x) = 0 \]

\[y''''(x) = 0 \]

\[y'''(x) = 0 \]

\[y''(x) = 0 \]

\[y'(x) = 0 \]

\[y(x) = A x + B \]

\[y''(x) = 0 \]

\[y'''(x) = 0 \]

\[y''''(x) = 0 \]

\[y'''(x) = 0 \]

\[y''(x) = 0 \]

\[y'(x) = 0 \]