INTRODUCTION TO

FLUIDIZED BEDS

Outline/Contents

- \checkmark Introduction.
- \checkmark Fluidization Flow Regimes.
- \checkmark Overall Gas (Voidage) and solids Hold-up.
- \checkmark Radial and Axial Solids Hold-Up Profiles.
- \checkmark Radial and Axial voidage distribution.
- \checkmark Gas and Solid Mixing.
- \checkmark Scale-Up.
- \checkmark Reactor Modeling.

- \cdot it has the ability to process large volumes of fluid.
- Excellent gas-solid contacting.
- ❖ Heat and mass transfer rates between gas and particles are high when compared with other modes of contacting.
- \triangle **No hot spot even with** highly exothermic reaction.
- \triangleleft Ease of solids handling.

Advantages Disadvantages

- ❖ Broad or even bimodal residence time distribution of the gas due to dispersion and bypass in the form of bubbles.
- ❖ Broad residence time distribution of solids due to intense solids mixing.
- ❖ Erosion of internals.
- **❖ Attrition** of catalyst particles.
- Difficult Scale-up due to complex hydrodynamics.

CHEMICAL REACTION ENGINEERING LABORATORY

Industrial Applications of Fluidized Bed Reactor

- \checkmark Acrylonitrile by the Sohio Process.
- \checkmark Fischer-Tropsch Synthesis.
- \checkmark Phthalic anhydride synthesis.
- \checkmark Methanol to gasoline and olefin processes.
- \checkmark Cracking of Hydrocarbons (Fluid Catalytic Cracking, etc).
- \checkmark Coal combustion.
- \checkmark Coal gasification
- \checkmark Cement clinker production.
- \checkmark Titanium dioxide production.
- \checkmark Calcination of AL(OH)3.
- \checkmark Granulation drying of yeast.
- \checkmark Heat exchange
- \checkmark Absorption
- \checkmark Nuclear energy (Uranium processing, nuclear fuel fabrication, reprocessing of fuel and waste disposal).

CHEMICAL REACTION ENGINEERING LABORATORY

Yang 2003

Fluidization Flow Regimes

Geldart's Classification of Powders

- **Group A (Aeratable) :- (e.g., Ammoxidation of propylene) small mean particle size and/or low particle density (<~1.4 g/cm3), gas bubbles appear at minimum bubbling velocity (Umb).**
- **Group B (Sand-Like) :- (e.g.,Starch) particle size 40 μm to 500 μm and density 1.4 to 4 g/cm3**, **gas bubbles appear at the minimum fluidization velocity (Umb).**
- **Group C (Cohesive) :- very fine particle, particle size < 30 μm**, **difficult to fluidize because inter-particle forces are relatively large, compared to those resulting from the action of gas.**
- **Group D (Spoutable) :- (e.g., Roasting coffee beans) large particle, stable spouted beds can be easily formed in this group of powders.**

Kunii and Levenspiel (1991)

Diagram of the Geldart classification of particles, Geldart (1973).

Flow Regimes in Fluidized Beds

J. Ruud van Ommen, 2003

Minimum Fluidization Velocity

 $U_{\mathbf{r}_{\text{ref}}}$ if the void fraction ε_{mf} at incipient fluidization is known. This equation can be used to calculate the minimum fluidization velocity

$$
(\rho_p - \rho_f)g = \frac{\rho_f u_{mf}^2}{\Phi_s D_p \varepsilon_{mf}^3} \left[\frac{150 (1 - \varepsilon_{mf}) \mu}{\Phi_s D_p u_{mf} \rho_f} + 1.75 \right]
$$

Experimentally, the most common method of measurement requires that pressure drop across the bed be recorded as the superficial velocity is increased stepwise through Umf and beyond, Umf is then taken at the intersection of the straight lines corresponding to the fixed bed and fluidized bed portions of the graph obtained when ΔP_{bed} is plotted against U on log-log coordinates.

Bubbling Fluidization

- \checkmark This type of fluidization has been called 'aggregative fluidization', and under these conditions, the bed appears to be divided into two phases, the bubble phase and the emulsion phase.
- \checkmark The bubbles appear to be very similar to gas bubbles formed in a liquid and they behave in a similar manner. The bubbles coalesce as they rise through the bed.

Turbulent Fluidization

Turbulent regime has the following features:-

- **High solid hold-ups (typically 25-35 % by volume).**
- **Limited axial mixing of gas.**
- **Suitable for exothermic and fast reactions.**
- **Good gas-solid contact and hence, favors reactant conversion.**
- **high gas flow-rates operation and good for isothermal operation.**
- **Favorable bed to surface heat transfer.**

Canada et al. 1978

Some commercial processes in turbulent fluidization

Bi et al. 2000

Fast Fluidized Bed

- The fast fluidization occurs as a result of continuing increasing in operating velocity beyond that required at turbulent fluidization, a critical velocity, commonly called the transport velocity (Utr), will be reached where a significant particle entrainment occurs.
- \checkmark The CFB has significant industrial applications because of its efficiency, operational flexibility, and overall profitability (Berruti *et al.*, 1995).

Transition between Fluidization Regimes.

- \checkmark Grace (1986a) summarized the effects of particles properties and operating conditions on fluidization behavior and prepared a flow regime diagram. The flow regime diagram was further modified by Kunii and Levenspiel (1997).
- \checkmark For given particles and operating velocity, the gas-solid contact pattern can be determined using this diagram. Likewise, for a given flow regime, this diagram could provide available combinations of particle properties and gas velocity.

Fluidization diagram

Yerushalmi and Cankurt, 1970

Methods for Regime Transition Identification

 Several measurement methods have been utilized to determine the transition from bubbling or slugging to turbulent fluidization which can be classified into three groups:-

- \checkmark Visual Observation,.
- \checkmark Pressure Drop-versus Velocity diagram.
- \checkmark local and overall bed expansion.
- \checkmark Based on signals from pressure transducers, capacitance probes, optical fiber probes, X-ray facilities.

Bi et al. 2000

School of Engineering & Applied Science

Generalized effect of operating and design parameters on flow regime transition

Effect of column diameter

- U*c* decreases with increasing column diameter for small columns (less than 2 m), becoming insensitive to column diameter for Dt > 0.2 m.
- \checkmark Similar trends were observed by Zhao and Yang (1991) in columns with internals.

Some Selected References

- \checkmark Cai et al., 1989, "Effect of operating temperature and pressure on the transition from bubbling to turbulent fluidization", AICHE Symposium series, 85, 37-43.
- \checkmark Chehbouni et al., (1994), "Characterization of the flow transition between bubbling and turbulent fluidization", Ind. Eng. Chem. Res., 33, 1889-1896.
- \checkmark Bi et al., (2000), "A state-of-art review of gas-solid turbulent fluidization", Chemical engineering science, 55, 4789-4825.
- \checkmark Andreux et al. (2005), "New description of fluidization regimes", AICHE Journal, 51, No.4, 1125-1130.

