18. By definition, \[P_2(\cos \phi) = \frac{3}{2} \cos^2 \phi - \frac{1}{2}. \]

Hence
\[1 - \cos^2 \phi = -\frac{3}{2} P_2(\cos \phi) + \frac{3}{2}, \]

and
\[\mu = -\frac{3}{2} r^2 P_2(\cos \phi) + \frac{3}{2} \]
\[= r^2 (\cos^2 \phi) + \frac{3}{2} + \frac{3}{2}. \]

Solutions to Problem Set 12.11, page 598

4. \(w = w(x, \tau), W = \mathcal{L}\{w(x, \tau)\} = W(x, s) \). The subsidiary equation is
\[\frac{\partial W}{\partial \tau} + x\mathcal{L}\{w_x(x, \tau)\} = \frac{\partial W}{\partial x} + x(sW - w(x, 0)) = x\mathcal{L}(1) = \frac{x}{s} \]
and \(w(x, 0) = 1 \).

By simplification,
\[\frac{\partial W}{\partial \tau} + xW = x + \frac{x}{s}. \]

By integration of this first-order ODE with respect to \(x \) we obtain
\[W = c(s)e^{-x^2/2} + \frac{1}{s^2} + \frac{1}{s}. \]

For \(x = 0 \) we have \(w(0, \tau) = 1 \) and
\[W(0, s) = \mathcal{L}\{w(0, \tau)\} = \mathcal{L}\{1\} = \frac{1}{s} = c(s) + \frac{1}{s^2} + \frac{1}{s}. \]

Hence \(c(s) = -1/s^2 \), so that
\[W = -\frac{1}{s^2} e^{-x^2/2} + \frac{1}{s^2} + \frac{1}{s}. \]

The inverse Laplace transform of this solution of the subsidiary equation is
\[w(x, \tau) = -(t - \frac{1}{2} x^2) u(t - \frac{1}{2} x^2) + t + 1 \]
\[= \begin{cases} t + 1 & \text{if } t < \frac{1}{2} x^2 \\ \frac{3}{2} x^2 + 1 & \text{if } t > \frac{1}{2} x^2. \end{cases} \]