2.3.1 Thermal properties

Products: ABAQUS/Standard  ABAQUS/Explicit  

I. Field-variable-dependent conductivity

Elements tested

C3D8HT    C3D8RHT    C3D8RT    C3D8T    C3D10MHT    C3D10MT    C3D20HT    C3D20RHT    C3D20RT    C3D20T    CAX4HT    CAX4RHT    CAX4RT    CAX4T    CAX6MHT    CAX6MT    CGAX4HT    CGAX4RHT    CGAX4RT    CGAX4T    CGAX6MHT    CGAX6MT    CPE4HT    CPE4RHT    CPE4RT    CPE4T    CPE6MHT    CPE6MT    CPE8HT    CPE8RHT    CPE8RT    CPE8T    CPEG3T    CPEG4HT    CPEG4RHT    CPEG4RT    CPEG4T    CPEG6MHT    CPEG6MT    CPEG8HT    CPEG8RHT    CPEG8T    CPS4RT    CPS4T    CPS6MT    DC3D8    DC3D10    DC3D20    DC2D3    DC2D4    DC2D6    DC2D8    DC1D2   

Problem description

A one-dimensional steady-state heat transfer analysis with field-variable-dependent conductivity is performed. A heat rod with constant conductivity is placed on each side of a heat rod whose conductivity is a function of predefined field variables. These field variables are varied linearly over the course of the four increments of the analysis.

Model:

Element 1: length = 1.0, area = 3.0, conductivity = 150.0

Element 2: length = 2.0, area = 3.0, conductivity = field-variable-dependent (see below)

Element 3: length = 3.0, area = 3.0, conductivity = 150.0

In ABAQUS/Standard steady-state simulations are performed using both coupled temperature-displacement elements and pure heat transfer elements to model the rods. In ABAQUS/Explicit CPE4RT elements are used to model the heat rods (unit width is assumed for each heat rod), and a transient analysis is performed. The total simulation time is 1.40 × 106. This provides enough time for the transient solution to reach steady-state conditions in this problem.

Boundary conditions:

=1000.0, =0.0

Results and discussion

The temperatures on each end of the rod (nodes 2 and 3) are reported below. These temperatures match the exact results.

Input files

ABAQUS/Standard input file

fvdepcond_std_c3d8ht.inp

Field-variable-dependent conductivity; C3D8HT elements.

fvdepcond_std_c3d8rht.inp

Field-variable-dependent conductivity; C3D8RHT elements.

fvdepcond_std_c3d8rt.inp

Field-variable-dependent conductivity; C3D8RT elements.

fvdepcond_std_c3d8t.inp

Field-variable-dependent conductivity; C3D8T elements.

fvdepcond_std_c3d10mht.inp

Field-variable-dependent conductivity; C3D10MHT elements.

fvdepcond_std_c3d10mt.inp

Field-variable-dependent conductivity; C3D10MT elements.

fvdepcond_std_c3d20ht.inp

Field-variable-dependent conductivity; C3D20HT elements.

fvdepcond_std_c3d20rht.inp

Field-variable-dependent conductivity; C3D20RHT elements.

fvdepcond_std_c3d20rt.inp

Field-variable-dependent conductivity; C3D20RT elements.

fvdepcond_std_c3d20rt_post.inp

Field-variable-dependent conductivity; *POST OUTPUT analysis.

fvdepcond_std_c3d20t.inp

Field-variable-dependent conductivity; C3D20T elements.

fvdepcond_std_cax4ht.inp

Field-variable-dependent conductivity; CAX4HT elements.

fvdepcond_std_cax4rht.inp

Field-variable-dependent conductivity; CAX4RHT elements.

fvdepcond_std_cax4rt.inp

Field-variable-dependent conductivity; CAX4RT elements.

fvdepcond_std_cax4t.inp

Field-variable-dependent conductivity; CAX4T elements.

fvdepcond_std_cax6mht.inp

Field-variable-dependent conductivity; CAX6MHT elements.

fvdepcond_std_cax6mt.inp

Field-variable-dependent conductivity; CAX6MT elements.

fvdepcond_std_cgax4ht.inp

Field-variable-dependent conductivity; CGAX4HT elements.

fvdepcond_std_cgax4rht.inp

Field-variable-dependent conductivity; CGAX4RHT elements.

fvdepcond_std_cgax4rt.inp

Field-variable-dependent conductivity; CGAX4RT elements.

fvdepcond_std_cgax4t.inp

Field-variable-dependent conductivity; CGAX4T elements.

fvdepcond_std_cgax6mht.inp

Field-variable-dependent conductivity; CGAX6MHT elements.

fvdepcond_std_cgax6mt.inp

Field-variable-dependent conductivity; CGAX6MT elements.

fvdepcond_std_cpe4ht.inp

Field-variable-dependent conductivity; CPE4HT elements.

fvdepcond_std_cpe4rht.inp

Field-variable-dependent conductivity; CPE4RHT elements.

fvdepcond_std_cpe4rt.inp

Field-variable-dependent conductivity; CPE4RT elements.

fvdepcond_std_cpe4t.inp

Field-variable-dependent conductivity; CPE4T elements.

fvdepcond_std_cpe6mht.inp

Field-variable-dependent conductivity; CPE6MHT elements.

fvdepcond_std_cpe6mt.inp

Field-variable-dependent conductivity; CPE6MT elements.

fvdepcond_std_cpe8ht.inp

Field-variable-dependent conductivity; CPE8HT elements.

fvdepcond_std_cpe8rht.inp

Field-variable-dependent conductivity; CPE8RHT elements.

fvdepcond_std_cpe8rt.inp

Field-variable-dependent conductivity; CPE8RT elements.

fvdepcond_std_cpe8t.inp

Field-variable-dependent conductivity; CPE8T elements.

fvdepcond_std_cpeg3t.inp

Field-variable-dependent conductivity; CPEG3T elements.

fvdepcond_std_cpeg4ht.inp

Field-variable-dependent conductivity; CPEG4HT elements.

fvdepcond_std_cpeg4rht.inp

Field-variable-dependent conductivity; CPEG4RHT elements.

fvdepcond_std_cpeg4rt.inp

Field-variable-dependent conductivity; CPEG4RT elements.

fvdepcond_std_cpeg4t.inp

Field-variable-dependent conductivity; CPEG4T elements.

fvdepcond_std_cpeg6mht.inp

Field-variable-dependent conductivity; CPEG6MHT elements.

fvdepcond_std_cpeg6mt.inp

Field-variable-dependent conductivity; CPEG6MT elements.

fvdepcond_std_cpeg8ht.inp

Field-variable-dependent conductivity; CPEG8HT elements.

fvdepcond_std_cpeg8rht.inp

Field-variable-dependent conductivity; CPEG8RHT elements.

fvdepcond_std_cpeg8t.inp

Field-variable-dependent conductivity; CPEG8T elements.

fvdepcond_std_cps4rt.inp

Field-variable-dependent conductivity; CPS4RT elements.

fvdepcond_std_cps4t.inp

Field-variable-dependent conductivity; CPS4T elements.

fvdepcond_std_cps6mt.inp

Field-variable-dependent conductivity; CPS6MT elements.

mcdisd1nt1.inp

Field-variable-dependent conductivity; DC1D2 elements.

fvdepcond_std_dc3d8.inp

Field-variable-dependent conductivity; DC3D8 elements.

fvdepcond_std_dc3d10.inp

Field-variable-dependent conductivity; DC3D10 elements.

fvdepcond_std_dc3d20.inp

Field-variable-dependent conductivity; DC3D20 elements.

fvdepcond_std_dc2d3.inp

Field-variable-dependent conductivity; DC2D3 elements.

fvdepcond_std_dc2d4.inp

Field-variable-dependent conductivity; DC2D4 elements.

fvdepcond_std_dc2d6.inp

Field-variable-dependent conductivity; DC2D6 elements.

fvdepcond_std_dc2d8.inp

Field-variable-dependent conductivity; DC2D8 elements.

ABAQUS/Explicit input file

fvdepcond_xpl_cpe4rt.inp

Field-variable-dependent conductivity; CPE4RT elements.

II. Conductivity and specific heat

Elements tested

CPE4T    CPE4RT    CPEG4T    DC1D3   

Problem description

A simple transient heat transfer analysis of a heat link constructed with DC1D3 elements is considered in ABAQUS/Standard. In ABAQUS/Explicit CPE4RT elements are used to model the heat link. The temperature at one end of the link is fixed, while a flux is applied to the other end. The conductivity and the specific heat of the material comprising the heat link vary with prescribed values of a field variable (FV). The value of this field variable is altered with time.

In both ABAQUS/Standard and ABAQUS/Explicit a transient analysis is conducted. The total simulation time is 6.

Results and discussion

The nodal temperatures of the link confirm that the thermal properties of the material do, indeed, depend on the field variable. The actual values of the material parameters as a function of the field variable are, therefore, correct, since the temperatures were calculated from these parameters by ABAQUS.

Input files

ABAQUS/Standard input file

mcsisd1nt1.inp

Conductivity and specific heat analysis; DC1D3 elements.

fvcondspec_std_cpe4t.inp

Conductivity and specific heat analysis; CPE4T elements.

fvcondspec_std_cpeg4t.inp

Conductivity and specific heat analysis; CPEG4T elements.

ABAQUS/Explicit input file

fvcondspec_xpl_cpe4rt.inp

Conductivity and specific heat analysis; CPE4RT elements.

III. Gap conductance

Elements tested

CPEG4T    C3D8RT    C3D8T    DC3D8    DCC3D8   

Problem description

The tests in this section are set up as cases of uniform one-dimensional heat flux using generalized plane strain (ABAQUS/Standard only), and three-dimensional elements. In all ABAQUS/Standard cases a steady-state heat transfer analysis is performed. In ABAQUS/Explicit a transient analysis is performed for each case, with a simulation time chosen to ensure that steady-state conditions are reached in this problem. Particular values (gap clearance, predefined field variables, etc.) vary during the solution, which in turn influence the conductivity across the interface and, thus, the solution.

Results and discussion

The results match the exact solutions.

Input files

ABAQUS/Standard input files

mgcgco1ctug.inp

Gap clearance-dependent conductivity, CPEG4T elements.

mgcgpo1ctug.inp

Gap pressure-dependent conductivity, CPEG4T elements.

mgcgco1ctus.inp

Gap clearance-dependent conductivity, C3D8T elements.

mgcgpo1ctus.inp

Gap pressure-dependent conductivity, C3D8T elements.

mgcgcd1ctus.inp

Field-variable-dependent conductivity, DC3D8 elements.

mgcoot1hts.inp

Gap temperature-dependent conductivity, DC3D8 elements.

mgcood1hts.inp

Gap field-variable-dependent conductivity, DC3D8 elements.

mgcmfo1hts.inp

Gap mass-flow-rate-dependent conductivity, DCC3D8 elements.

ABAQUS/Explicit input files

gapclearcond_x_c3d8rt.inp

Gap clearance-dependent conductivity, C3D8RT elements.

gappresscond_x_c3d8rt.inp

Gap pressure-dependent conductivity, C3D8RT elements.

gapfvcond_x_c3d8rt.inp

Field-variable-dependent conductivity, C3D8RT elements.