*HEADING HYPERELASTIC TEST DATA INPUT TRELOAR'S EXPERIMENTAL DATA UNIAXIAL TEST DATA ONLY *RESTART,WRITE,FREQUENCY=5 *NODE,NSET=ALL 1, 2,1. 3,1.,1., 4,0.,1., 5,0.,0.,1. 6,1.,0.,1. 7,1.,1.,1. 8,0.,1.,1. *NSET,NSET=FACE1 1,2,3,4 *NSET,NSET=FACE2 5,6,7,8 *NSET,NSET=FACE3 1,2,5,6 *NSET,NSET=FACE4 2, *NSET,NSET=FACE42 3,6,7 *NSET,NSET=FACE5 3,4,7,8 *NSET,NSET=FACE6 4,1,8,5 *EQUATION ** Since the S11 output is Cauchy or true stress, we need to ** determine the nominal stress for post-processing. ** Nodes 3,6,7 are tied to node 2 in dof 1 so that: ** Nominal stress (dof 1) = RF1 (@ node 2) / Original area ** (w/c is 1 x 1 = 1) 2, FACE42,1,1, 2,1,-1 *ELEMENT,TYPE=C3D8RH,ELSET=ONE 1,1,2,3,4,5,6,7,8 *SOLID SECTION,ELSET=ONE,MATERIAL=TREL *MATERIAL,NAME=TREL *HYPERELASTIC,OGDEN,N=2,TEST DATA INPUT *UNIAXIAL TEST DATA 1.5506, 0.1338 2.4367, 0.2675 3.1013, 0.3567 4.2089, 0.6242 5.3165, 0.8917 5.9810, 1.1592 6.8671, 1.4268 8.8608, 2.0510 10.6329, 2.5860 12.4051, 3.0318 16.1709, 3.7898 19.9367, 4.3694 23.4810, 4.8153 27.4684, 5.1720 31.0127, 5.4395 34.5570, 5.7070 38.3228, 5.9299 42.0886, 6.0637 45.6329, 6.1975 49.3987, 6.3312 53.1646, 6.4650 56.9304, 6.5541 64.2405, 6.6433 *STEP,NLGEOM,INC=50 Step 1: Uniaxial Tension *STATIC,DIRECT .25,7. *BOUNDARY,OP=NEW FACE1,3 FACE3,2 FACE6,1 FACE4,1,1,7. *ENERGY PRINT *EL PRINT,FREQUENCY=5 S, E, *NODE PRINT,FREQUENCY=5 U,RF *NODE FILE,FREQUENCY=2 U,RF *OUTPUT,FIELD,FREQUENCY=0 *NODE OUTPUT,NSET=ALL U,RF *OUTPUT,HISTORY,FREQUENCY=1 *NODE OUTPUT,NSET=ALL U,RF *END STEP *STEP,NLGEOM,INC=20 Step 2: Unload *STATIC,DIRECT .5,7. *BOUNDARY,OP=MOD FACE4,1 *END STEP *STEP,NLGEOM,INC=50 Step 3: Biaxial Tension *STATIC,DIRECT .25,4. *BOUNDARY,OP=NEW FACE1,3 FACE3,2 FACE6,1 FACE4,1,1,4. FACE5,2,2,4. *END STEP *STEP,NLGEOM,INC=20 Step 4: Unload *STATIC,DIRECT .5,4. *BOUNDARY,OP=MOD FACE4,1 FACE5,2 *END STEP *STEP,NLGEOM,INC=50 Step 5: Planar Tension (Pure Shear) *STATIC,DIRECT .25,4. *BOUNDARY,OP=NEW FACE1,3 FACE3,2 FACE5,2 FACE6,1 FACE4,1,1,4. *END STEP