C C User subroutine VUMAT subroutine vumat ( C Read only - * nblock, ndir, nshr, nstatev, nfieldv, nprops, lanneal, * stepTime, totalTime, dt, cmname, coordMp, charLength, * props, density, strainInc, relSpinInc, * tempOld, stretchOld, defgradOld, fieldOld, * stressOld, stateOld, enerInternOld, enerInelasOld, * tempNew, stretchNew, defgradNew, fieldNew, C Write only - * stressNew, stateNew, enerInternNew, enerInelasNew ) C include 'vaba_param.inc' C dimension coordMp(nblock,*), charLength(nblock), props(nprops), 1 density(nblock), strainInc(nblock,ndir+nshr), 2 relSpinInc(nblock,nshr), tempOld(nblock), 3 stretchOld(nblock,ndir+nshr), 4 defgradOld(nblock,ndir+nshr+nshr), 5 fieldOld(nblock,nfieldv), stressOld(nblock,ndir+nshr), 6 stateOld(nblock,nstatev), enerInternOld(nblock), 7 enerInelasOld(nblock), tempNew(nblock), 8 stretchNew(nblock,ndir+nshr), 9 defgradNew(nblock,ndir+nshr+nshr), 1 fieldNew(nblock,nfieldv), 2 stressNew(nblock,ndir+nshr), stateNew(nblock,nstatev), 3 enerInternNew(nblock), enerInelasNew(nblock) C character*80 cmname dimension intv(2) parameter ( zero = 0.d0, one = 1.d0, two = 2.d0, three = 3.d0, * third = one / three, half = 0.5d0, twothds = two / three, * op5 = 1.5d0 ) parameter ( tempFinal = 1.d2, timeFinal = 1.d-2 ) C C J2 Mises Plasticity with kinematic hardening for the plane strain C and axisymmetric cases. The state variables are stored as: C STATE(*,1) = back stress component 11 C STATE(*,2) = back stress component 22 C STATE(*,3) = back stress component 33 C STATE(*,4) = back stress component 12 C STATE(*,5) = equivalent plastic strain C * * Check that ndir=3 and nshr=1. If not, exit. * intv(1) = ndir intv(2) = nshr if (ndir .ne. 3 .or. nshr .ne. 1) then call xplb_abqerr(1,'Subroutine VUMAT is implemented '// * 'only for plane strain and axisymmetric cases '// * '(ndir=3 and nshr=1)',0,zero,' ') call xplb_abqerr(-2,'Subroutine VUMAT has been called '// * 'with ndir=%I and nshr=%I',intv,zero,' ') call xplb_exit end if * e = props(1) xnu = props(2) yield = props(3) hard = props(4) * twomu = e / ( one + xnu ) alamda = twomu * xnu / ( one - two * xnu ) term = one / ( twomu + twothds * hard ) * * If stepTime equals to zero, assume the material pure elastic * and use initial elastic modulus * if ( stepTime .eq. zero ) then do k = 1, nblock * Trial stress trace = strainInc(k,1) + strainInc(k,2) + strainInc(k,3) stressNew(k,1) = stressOld(k,1) * + twomu * strainInc(k,1) + alamda * trace stressNew(k,2) = stressOld(k,2) * + twomu * strainInc(k,2) + alamda * trace stressNew(k,3) = stressOld(k,3) * + twomu * strainInc(k,3) + alamda * trace stressNew(k,4)=stressOld(k,4) + twomu * strainInc(k,4) end do else const = sqrt(twothds) do k = 1, nblock * Trial stress trace = strainInc(k,1) + strainInc(k,2) + strainInc(k,3) sig1 = stressOld(k,1) + twomu*strainInc(k,1) + alamda*trace sig2 = stressOld(k,2) + twomu*strainInc(k,2) + alamda*trace sig3 = stressOld(k,3) + twomu*strainInc(k,3) + alamda*trace sig4 = stressOld(k,4) + twomu*strainInc(k,4) * Trial stress measured from the back stress s1 = sig1 - stateOld(k,1) s2 = sig2 - stateOld(k,2) s3 = sig3 - stateOld(k,3) s4 = sig4 - stateOld(k,4) * Deviatoric part of trial stress measured from the back stress smean = third * ( s1 + s2 + s3 ) ds1 = s1 - smean ds2 = s2 - smean ds3 = s3 - smean * Magnitude of the deviatoric trial stress difference dsmag = sqrt ( ds1*ds1 + ds2*ds2 + ds3*ds3 + two*s4*s4 ) * * Check for yield by determining the factor for plasticity, zero for * elastic, one for yield radius = const * yield facyld = zero if ( dsmag - radius .ge. zero ) facyld = one * * Add a protective addition factor to prevent a divide by zero * when DSMAG is zero. If DSMAG is zero, we will not have exceeded * the yield stress and FACYLD will be zero. dsmag = dsmag + ( one - facyld ) * * Calculated increment in gamma ( this explicitly includes the time step) diff = dsmag - radius dgamma = facyld * term * diff * * Update equivalent plastic strain deqps = const * dgamma stateNew(k,5) = stateOld(k,5) + deqps * * Divide DGAMMA by DSMAG so that the deviatoric stresses are * explicitly converted to tensors of unit magnitude in the following * calculations dgamma = dgamma / dsmag * * Update back stress factor = twothds * hard * dgamma stateNew(k,1) = stateOld(k,1) + factor * ds1 stateNew(k,2) = stateOld(k,2) + factor * ds2 stateNew(k,3) = stateOld(k,3) + factor * ds3 stateNew(k,4) = stateOld(k,4) + factor * s4 * * Update the stress factor = twomu * dgamma stressNew(k,1) = sig1 - factor * ds1 stressNew(k,2) = sig2 - factor * ds2 stressNew(k,3) = sig3 - factor * ds3 stressNew(k,4) = sig4 - factor * s4 * * Update the specific internal energy - stressPower = half * ( * ( stressOld(k,1)+stressNew(k,1) ) * strainInc(k,1) + * ( stressOld(k,2)+stressNew(k,2) ) * strainInc(k,2) + * ( stressOld(k,3)+stressNew(k,3) ) * strainInc(k,3) ) + * ( stressOld(k,4)+stressNew(k,4) ) * strainInc(k,4) enerInternNew(k) = enerInternOld(k) * + stressPower / density(k) * * Update the dissipated inelastic specific energy - smean = third * * ( stressNew(k,1) + stressNew(k,2) + stressNew(k,3) ) equivStress = sqrt ( op5 * ( * ( stressNew(k,1) - smean )**2 + * ( stressNew(k,2) - smean )**2 + * ( stressNew(k,3) - smean )**2 + * two * stressNew(k,4)**2 ) ) plasticWorkInc = equivStress * deqps enerInelasNew(k) = enerInelasOld(k) * + plasticWorkInc / density(k) end do end if * return end