*HEADING test Bergstrom-Boyce hysteresis with temperature dependent elasticity; solution after relaxation step should be close to purely hyperelastic run; the hourglass stiffness should be twice the purely hyperelastic problem. *NODE,NSET=ALL 1, 2,1. 3,1.,1., 4,0.,1., 5,0.,0.,1. 6,1.,0.,1. 7,1.,1.,1. 8,0.,1.,1. *NSET,NSET=FACE1 1,2,3,4 *NSET,NSET=FACE2 5,6,7,8 *NSET,NSET=FACE3 1,2,5,6 *NSET,NSET=FACE4 2,3,6,7 *NSET,NSET=FACE5 3,4,7,8 *NSET,NSET=FACE6 4,1,8,5 *ELEMENT,TYPE=C3D8RH,ELSET=ONE 1,1,2,3,4,5,6,7,8 *SOLID SECTION,ELSET=ONE,MATERIAL=POLY *MATERIAL,NAME=POLY *HYPERELASTIC,N=1,MODULI=LONG TERM 80., 20., 0., 0. 75., 18., 0., 20. 70., 16., 0., 40. *HYSTERESIS 1.0,1.22474e-4,1.0,-1.0 *EXPANSION 0.001, *STEP,NLGEOM,INC=20,UNSYMM=YES UNIAXIAL TENSION *STATIC 1.e-5,1.e-5 *BOUNDARY,OP=NEW FACE1,3 FACE3,2 FACE6,1 FACE4,1,1,5. *TEMPERATURE ALL,40. *EL PRINT,F=10 S, E, ener, *NODE PRINT,F=10 U,RF *OUTPUT,FIELD,FREQ=10 *ELEMENT OUTPUT S,E ener, *OUTPUT,FIELD,FREQ=10 *NODE OUTPUT U,RF *END STEP *STEP,NLGEOM,INC=20,UNSYMM=YES UNIAXIAL TENSION (2) *STATIC 10.,1.e3 *EL PRINT,F=1000 S, E, ener, *NODE PRINT,F=1000 U,RF *OUTPUT,FIELD,FREQ=10 *ELEMENT OUTPUT S,E ener, *OUTPUT,FIELD,FREQ=1000 *NODE OUTPUT U,RF *END STEP