
1

Washington University / University of Missouri‐ St. Louis

Department: Electrical Engineering

Ultrasound Elasticity Imaging

Project Report

Senior Design Project

(JEE4980)

Professor Jason W. Trobaugh, D.Sc

December 16, 2008

Group members

Russo, John

Dake, Emmanuel

Abousamra, Taufik

2

Table of content

Abstract ………………………………………………………………………………… 5

Introduction …………………………………………………………………………….. 5

 Background …………………………………………………………………….. 5

Purpose …………………………………………………………………………. 6

Overview ……………………………………………………………………….. 6

Methodology ………………………………………………………………………….... 7

Code description….. ……………………………………………………………. 7

Flow chart ………………………………………………………………………. 8

Percent compression ……………………………………………………………. 8

Results …………………………………………………………………………………... 8

Conclusion ………………………………………………………………………………14

Recommendations ……………………………………………………………………….14

3

Listing of Figures

Tofu1: The filtered displacement for different signal spans …………………………… 9

Tofu2: The filtered displacement for different signal spans …………………………… 10

Tofu1: The strain for different signal spans ……………………………………………. 11

Tofu2: The strain for different signal spans ……………………………………………. 11

Tofu1: Percent compression strain and filtered displacement …………………………. 12

Tofu2: Percent compression strain and filtered displacement …………………………. 13

Appendix A

Code ……………………………………………………………………………. 15

Final Demo Code ………………………………………………………………. 16

4

Appendix B

Members ……………………………………………………………………….. 21

References ……………………………………………………………………… 21

Appendix C

References ……………………………………………………………………… 21

5

Abstract

Nowadays, ultrasound imaging is a not just reduced to looking at images. It can be used to explore
motions of tissues, blood flow, detecting unknown areas under the skin of a living human. We researched
an add-on tool that computes elasticity of tissues of certain areas from a set of ultrasound frames. This
tool could be used for many purposes but most importantly for tumor detection. Tumors in a human body
have a special characteristic that is its stiffness. We are taking advantage of the high stiffness level on
tumors to find them in an ultrasound set of frames. To do that, we developed an algorithm that calculates
the displacement of each point in an ultrasound image relative to previous image taken of a tissue
enduring compression. The derivative of the resulting displacement data is taken and that would produce
a strain or stiffness set of data that can be presented as an image. This image will highlight the areas
where there is a sudden change in the stiffness of the tissues

Introduction

Background

Medical imaging involves the exposition of an object to some form of energy and creating an
image as a result of how the input energy interacts with the object.

Ultrasound elasticity is a technique that has been used to detect tumors in tissues. One special
characteristic of tumors is that they have a higher stiffness relative to the normal tissue of the
human body.

The strain image is the derivative of a displacement image. It is an index of hardness or softness
of the region under consideration. By finding the strain indices of all the different layers of a
tissue in a human member, a tumor could be detected because of its abnormally high strain index
relative to the rest of the tissue.

Problem or need

Finding the strain of a tissue can not be done from just one ultrasound image. We had to collect a
set of ultrasound images of the tissue that were taken sequentially while compressing the tissue
with the transducer. In this process, the stiffer parts of the tissue will compress less than the
softer parts. We had to develop an algorithm that will compute the strain based on a certain set of
ultrasound data.

6

Purpose of report

The purpose is to write a program to calculate displacement and strain from a set of raw
ultrasound data using Matlab. We want to see the differences in consistency of displacement and
strain to detect any changes in a given substance sample. This technology is applicable in the
medical field to detect tumors and other discrepancies in human tissue.

Overview

In this project we wrote program using Matlab to improve Ultrasound Elasticity Imaging. We
researched Elasticity Imaging and combed that knowledge with past semesters Matlab code; we
then improved the code by writing a Matlab function that improves the speed or clarity of past
code. Our code takes the cross correlation of two signals, and then finds the displacement. We
then filtered the displacement and took the derivative to obtain our strain.

Methodology:

The purpose of this course is to improve upon the codes of previous semesters. There are a
number of ways to achieve that goal. Our group chose to write a code from scratch; this will
gave us a greater understanding of the project and a better understanding of MATLAB. The
advantages of writing our own code are; we can easily debug problems and understand the inner
workings of the code. This would be harder to conceptually do if we used past groups’ work.

Our code will takes the cross correlation of two signals, and then finds the displacement. After
we are satisfied with this displacement, we run the displacement through a filter. Our code then
takes the derivative of the filtered displacement to obtain a strain image.

Finally, we compute the percent strain compression. Our code is an improvement upon past
groups’ work in the following ways: it is a more straight forward, simplistic code, it improves
upon the speed of past semester code, and it gives the percent compression of the test substances.
The percent compression is a very important part of our code design because it puts the strain
data into something quantitative. In the past groups’ work, they just compared how the graphs
looked, and qualitatively decided if they were on the right track. Putting the strain images into
percent compression allows us to see how much the test substance is compressed compared to its
original size. This gives us numerical data that is useful, and no other group has done this yet.

7

Code description:

Our code uses a command we called ‘callcorr2’. The user passes two signals, the lower and
upper x-axis values, and the lower and upper y-axis values through callcorr2, and this outputs the
displacement. The code takes a signal (Sig1) with a specified window size (r1) and another
signal (Sig2) with a different specified window size (r2). These signals are up sampled by five
times, and the new signals are called s1 and s2. We then use two for loops to accumulate data
for our images. The outer loop gives the y range from y1 (lower bound) to y2 (upper bound),
and the inner loop give the x range from x1*up sample rate (lower bound) to x2*up sample rate
(upper bound). The x range is incremented in steps of 5*up sample rate; this makes our code run
faster, and it causes our images to be smoother in some cases. The rows are incremented by a
variable called ‘sample’, and the columns are incremented by a variable called ‘line’. In the
inner loop signal one is shifted by the difference in window size by putting zeros in front of the
signal. This causes signal one and signal two to line up. Our code then takes the shifted signal
one over a range of plus or minus its window size for each x value (r1) and compares it with
signal two over a range of plus or minus its window size for each x value (r2). The correlation
and lags of these two signals are found running those signals through a function called xcorr;
xcorr computes cross correlation between two signals. Our program then tries to find the max
correlation by matching up the peaks of the two signals, and records that max correlation along
with its max correlation location. The displacement of the line and sample for those signals is
the lags of the max correlation locations. We found that there were some very large spikes in our
displacement curves because sometimes the xcorr function would match up the wrong peaks.
We corrected these spikes, or blips as we called them, by using an if else loop. If a displacement
value was plus or minus ten from the previous displacement value, our loop replaced that value
with the previous displacement value. After displacement values were taken for every line and
sample, we ran those values through a filter. This was important because it made our choppy
displacement curve into a continuous curve; we needed a continuous curve so that we could take
the derivative of that curve. Our filter used a window size of twenty and added an array of ones
divided by the window size to get a moving average over that window size. This moving
average smoothed out our displacement curve, and then we got the strain of our data by using a
difference function (diff) on the filtered displacement. In order to get the percent compression of
the strain, we divided the difference of our filtered displacement by five; this made our x and y
sample sizes the same. Then we multiplied this by one hundred to get the strain into a percent.
We then summed the strain data to over small increments to get a total strain compression for the
image that spanned all of the frames.

8

Percent Compression:

The percent compression of an object can be calculated by taking the size of the object before it
was compressed, subtracting it from the size of the object after it was compressed, and then
dividing the whole thing by the original size of the object. We used this method by looking at
the tofu videos on the class website. We measured the anomalies before and after compression
and used the above technique to find percent compression. We checked to see if our code was
working correctly by looking at the displacement curve for a column of data over a small span.
The rise over run of the curve is the percent compression in that localized area. There were
different slopes for the part of the tofu that had an anomaly and the part that did not, we took the
slope of interest and found the percent compression. Assuming that the strain compression was
constant, we multiplied the small span by a number that would give us the full data span. The
compression from the video the compression from our displacement curve calculations matched,
and that is how we knew we were on the right track. After this we summed up the percent strain

9

compressions by using a signal span of ten at a time. We would make total displacement equal
to the total displacement plus the next span of ten until we covered all one hundred and sixteen
frames. At the end, the percent compression of all the frames summed to together equaled what
we calculated using the video. The percent compression is helpful because it gives us the ability
to quantitatively know how accurate our program is working; this will really take the guess work
out of judging the correctness of strain images, and therefore, it improves upon last semester
projects.

Results

Filtered Displacement and Strain:

The filtered displacements for tofu1 and tofu2 for different signal spans are show below.

Tofu1:

*Tofu1 Filtered Displacement Signal Span 10 *Tofu1 Filtered Displacement Signal Span 20

10

 *Tofu1 Filtered Displacement Signal Span 50

Tofu2:

*Tofu2 Filtered Displacement Signal Span 10 *Tofu2 Filtered Displacement Signal Span 20

 *Tofu2 Filtered Displacement Signal Span 50

The strains for tofu1 and tofu2 for different signal spans are shown below.

11

Tofu1:

 *Tofu1 Strain Signal Span 10 *Tofu1 Strain Signal Span 20

*Tofu1 Strain Signal Span 50

Tofu2:

*Tofu2 Strain Signal Span 10 *Tofu2 Strain Signal Span 20

12

*Tofu2 Strain Signal Span 50

As can be seen, these results get worse and worse as the signal span increases. They are almost
unreadable after a signal span of thirty. In order to get an accurate displacement and strain image over all
one hundred and sixteen frames of tofu1 and tofu2, we will compound the percent compression strain in
small increments to get a final displacement and strain. This is possible because the displacement and
strain should, hypothetically, be linear. Therefore, each small span should have the same displacement
and strain if their signal spans are equal.

Percent Compression Strain and Filtered Displacement:

The percent compression strains and filtered displacements for tofu1 and tofu2 are shown below.

Tofu1:

*Tofu1 Filtered Displacement Signal Span of 50 *Tofu1 % Compression Strain Signal Span 50

13

*Tofu1 Filtered Displacement Signal Span of 116 *Tofu1 % Compression Strain Signal Span 116

Tofu2:

*Tofu2 Filtered Displacement Signal Span of 50 *Tofu2 % Compression Strain Signal Span of 50

14

 *Tofu2 Filtered Displacement Signal Span of 116 *Tofu2 % Compression Strain Signal Span of 116

As you can see, this percent compression method gives much smoother displacement and strain results
over a much larger signal span. Also it gives us a quantitative way to look at strain.

Conclusion

In Conclusion, our code has improved upon past semester work by making strain analysis quantitative.
Also, we have improved the time of our program; it now runs at about sixteen seconds. These two
contributions will make strain easier to analyze over a wide range of data signals, and debugging will take
a shorter amount of time. I believe that this will go a long way in advancing ultrasound strain images.

Recommendations

Given More Time:

If we had more time to work on this project we would plot a percent compression ratio of the hard and

soft tofu of tofu1 and tofu2. This would further give us quantitative data that shows how the soft

compresses in relation to the hard, and vice versa. Another aspect we would have explored if time

allowed is the effect different types of filters would have on the displacement and strain. Also, it would

be beneficial to work on a normalized cross correlation; I believe this would work a lot better than the

xcorr function, and it would help eliminate blips. We didn’t have time to apply this percent strain

compression technique to other data samples, and if we had more time, we would have looked into

using this method over a wide range of test substances.

15

Appendix A

function displacement = callcorr2(Sig1, Sig2, x1, x2, y1, y2);
%x1 and x2 are the upper and lower boundaries of x-axis, must be larger
% than r1 and r2.
%y1 and y2 are the upper and lower boundaries of y-axis
usr = 5; %upsamplerate
r1 = (15*usr); %region window size for s1
r2 = (25*usr); %region window size for s2
s1 = resample(Sig1,usr,1); %upsampled signal 1
s2 = resample(Sig2,usr,1); %upsampled signal 2
maxlags = (r2-r1); %range that maxlags will check
[rows, cols]=size(s1); %makes sure that the cols and rows match up
if rows > cols
 in1 = s1'; %inputs 1 and 2 equal signals 1 and 2 inverted
 in2 = s2';
else
 in1 = s1; %inputs 1 and 2 equal signals 1 and 2
 in2 = s2;
end
line = 0;
for y = y1:y2
 sample = 0; %segment of signal row
 line = line + 1; %increments the column
 prev = 0;
 for x = x1*usr:usr*5:x2*usr
 sample = sample + 1;
 in1shift = [zeros(1,(r2-r1)) in1(y,x-r1:x+r1)];
 [corr,lags]=xcorr(in1shift,in2(y,x-r2:x+r2),ceil(maxlags));
 [maxcorr,maxcorrlocation] = max(corr);
 displacement(line,sample) = lags(maxcorrlocation);
 current = lags(maxcorrlocation);
 [row, col] = size(corr);
 if current < prev - 10
 current = prev;
 elseif current > prev + 10
 current = prev;
 else
 current = current;
 end
 displacement(line,sample) = current;
 prev = current;
 end
end
windowSize = 20;
FilterDisp = filter(ones(1,windowSize)/windowSize,1,displacement');
Strain = (diff(FilterDisp)/5)*100; %divide by 5 to get the x and y samples sizes the same, and then
multiple by 100 to get %comp
figure(7)
imagesc(Strain);
colorbar
figure(8)
imagesc(FilterDisp);
colorbar

16

Final Demo Code:
 totaldisplacement = callcorr2(b_data000, b_data010, 100, 1000, 1, 256);
figure(1)
imagesc(totaldisplacement')
colorbar
title('Tofu Unfiltered Displacement - frames 0 to 10')
windowSize = 20;
TotalFilterDisp = filter(ones(1,windowSize)/windowSize,1,totaldisplacement');
figure(2)
imagesc(TotalFilterDisp)
colorbar
title('Tofu Filtered Displacement - frames 0 to 10')
PercentStrain = (diff(TotalFilterDisp)/5)*100;
figure(3)
imagesc(PercentStrain, [0 100])
colorbar
title('Tofu Percent Strain Compression - frames 0 to 10')
M(1) = getframe;
%pause

totaldisplacement = totaldisplacement + callcorr2(b_data010, b_data020, 100, 1000, 1, 256);
figure(1)
imagesc(totaldisplacement')
colorbar
title('Tofu Unfiltered Displacement - frames 0 to 20')
windowSize = 20;
TotalFilterDisp = filter(ones(1,windowSize)/windowSize,1,totaldisplacement');
figure(2)
imagesc(TotalFilterDisp)
colorbar
title('Tofu Filtered Displacement - frames 0 to 20')
PercentStrain = (diff(TotalFilterDisp)/5)*100;
figure(3)
imagesc(PercentStrain, [0 100])
colorbar
title('Tofu Percent Strain Compression - frames 0 to 20')
M(2) = getframe;
%pause

totaldisplacement = totaldisplacement + callcorr2(b_data020, b_data030, 100, 1000, 1, 256);
figure(1)
imagesc(totaldisplacement')
colorbar
title('Tofu Unfiltered Displacement - frames 0 to 30')
windowSize = 20;
TotalFilterDisp = filter(ones(1,windowSize)/windowSize,1,totaldisplacement');
figure(2)
imagesc(TotalFilterDisp)
colorbar
title('Tofu Filtered Displacement - frames 0 to 30')
PercentStrain = (diff(TotalFilterDisp)/5)*100;
figure(3)
imagesc(PercentStrain, [0 100])
colorbar
title('Tofu Percent Strain Compression - frames 0 to 30')

17

M(3) = getframe;
%pause

totaldisplacement = totaldisplacement + callcorr2(b_data030, b_data040, 100, 1000, 1, 256);
figure(1)
imagesc(totaldisplacement')
colorbar
title('Tofu Unfiltered Displacement - frames 0 to 40')
windowSize = 20;
TotalFilterDisp = filter(ones(1,windowSize)/windowSize,1,totaldisplacement');
figure(2)
imagesc(TotalFilterDisp)
colorbar
title('Tofu Filtered Displacement - frames 0 to 40')
PercentStrain = (diff(TotalFilterDisp)/5)*100;
figure(3)
imagesc(PercentStrain, [0 100])
colorbar
title('Tofu Percent Strain Compression - frames 0 to 40')
M(4) = getframe;
%pause

totaldisplacement = totaldisplacement + callcorr2(b_data040, b_data050, 100, 1000, 1, 256);
figure(1)
imagesc(totaldisplacement')
colorbar
title('Tofu Unfiltered Displacement - frames 0 to 50')
windowSize = 20;
TotalFilterDisp = filter(ones(1,windowSize)/windowSize,1,totaldisplacement');
figure(2)
imagesc(TotalFilterDisp)
colorbar
title('Tofu Filtered Displacement - frames 0 to 50')
PercentStrain = (diff(TotalFilterDisp)/5)*100;
figure(3)
imagesc(PercentStrain, [0 100])
colorbar
title('Tofu Percent Strain Compression - frames 0 to 50')
M(5) = getframe;
%pause

totaldisplacement = totaldisplacement + callcorr2(b_data050, b_data060, 100, 1000, 1, 256);
figure(1)
imagesc(totaldisplacement')
colorbar
title('Tofu Unfiltered Displacement - frames 0 to 60')
windowSize = 20;
TotalFilterDisp = filter(ones(1,windowSize)/windowSize,1,totaldisplacement');
figure(2)
imagesc(TotalFilterDisp)
colorbar
title('Tofu Filtered Displacement - frames 0 to 60')
PercentStrain = (diff(TotalFilterDisp)/5)*100;
figure(3)
imagesc(PercentStrain, [0 100])

18

colorbar
title('Tofu Percent Strain Compression - frames 0 to 60')
M(6) = getframe;
%pause

totaldisplacement = totaldisplacement + callcorr2(b_data060, b_data070, 100, 1000, 1, 256);
figure(1)
imagesc(totaldisplacement')
colorbar
title('Tofu Unfiltered Displacement - frames 0 to 70')
windowSize = 20;
TotalFilterDisp = filter(ones(1,windowSize)/windowSize,1,totaldisplacement');
figure(2)
imagesc(TotalFilterDisp)
colorbar
title('Tofu Filtered Displacement - frames 0 to 70')
PercentStrain = (diff(TotalFilterDisp)/5)*100;
figure(3)
imagesc(PercentStrain, [0 100])
colorbar
title('Tofu Percent Strain Compression - frames 0 to 70')
M(7) = getframe;
%pause

totaldisplacement = totaldisplacement + callcorr2(b_data070, b_data080, 100, 1000, 1, 256);
figure(1)
imagesc(totaldisplacement')
colorbar
title('Tofu Unfiltered Displacement - frames 0 to 80')
windowSize = 20;
TotalFilterDisp = filter(ones(1,windowSize)/windowSize,1,totaldisplacement');
figure(2)
imagesc(TotalFilterDisp)
colorbar
title('Tofu Filtered Displacement - frames 0 to 80')
PercentStrain = (diff(TotalFilterDisp)/5)*100;
figure(3)
imagesc(PercentStrain, [0 100])
colorbar
title('Tofu Percent Strain Compression - frames 0 to 80')
M(8) = getframe;
%pause

totaldisplacement = totaldisplacement + callcorr2(b_data080, b_data090, 100, 1000, 1, 256);
figure(1)
imagesc(totaldisplacement')
colorbar
title('Tofu Unfiltered Displacement - frames 0 to 90')
windowSize = 20;
TotalFilterDisp = filter(ones(1,windowSize)/windowSize,1,totaldisplacement');
figure(2)
imagesc(TotalFilterDisp)
colorbar
title('Tofu Filtered Displacement - frames 0 to 90')
PercentStrain = (diff(TotalFilterDisp)/5)*100;

19

figure(3)
imagesc(PercentStrain, [0 100])
colorbar
title('Tofu Percent Strain Compression - frames 0 to 90')
M(9) = getframe;
%pause

totaldisplacement = totaldisplacement + callcorr2(b_data090, b_data100, 100, 1000, 1, 256);
figure(1)
imagesc(totaldisplacement')
colorbar
title('Tofu Unfiltered Displacement - frames 0 to 100')
windowSize = 20;
TotalFilterDisp = filter(ones(1,windowSize)/windowSize,1,totaldisplacement');
figure(2)
imagesc(TotalFilterDisp)
colorbar
title('Tofu Filtered Displacement - frames 0 to 100')
PercentStrain = (diff(TotalFilterDisp)/5)*100;
figure(3)
imagesc(PercentStrain, [0 100])
colorbar
title('Tofu Percent Strain Compression - frames 0 to 100')
M(10) = getframe;
%pause

totaldisplacement = totaldisplacement + callcorr2(b_data100, b_data110, 100, 1000, 1, 256);
figure(1)
imagesc(totaldisplacement')
colorbar
title('Tofu Unfiltered Displacement - frames 0 to 110')
windowSize = 20;
TotalFilterDisp = filter(ones(1,windowSize)/windowSize,1,totaldisplacement');
figure(2)
imagesc(TotalFilterDisp)
colorbar
title('Tofu Filtered Displacement - frames 0 to 110')
PercentStrain = (diff(TotalFilterDisp)/5)*100;
figure(3)
imagesc(PercentStrain, [0 100])
colorbar
title('Tofu Percent Strain Compression - frames 0 to 110')
M(11) = getframe;
%pause

totaldisplacement = totaldisplacement + callcorr2(b_data110, b_data116, 100, 1000, 1, 256);
figure(1)
imagesc(totaldisplacement')
colorbar
title('Tofu Unfiltered Displacement - frames 0 to 116')
windowSize = 20;
TotalFilterDisp = filter(ones(1,windowSize)/windowSize,1,totaldisplacement');
figure(2)
imagesc(TotalFilterDisp)
colorbar

20

title('Tofu Filtered Displacement - frames 0 to 116')
PercentStrain = (diff(TotalFilterDisp)/5)*100;
figure(3)
imagesc(PercentStrain, [0 100])
colorbar
title('Tofu Percent Strain Compression - frames 0 to 116')
M(12) = getframe;
%pause

figure(4)
movie(M,10,4)
caxis([0 100])
colorbar

21

Appendix B

Members

Russo, John- worked on coding, debugging, researching and presenting

Abousamra, Taufik – worked on coding, debugging, diagrams and presenting

Dake, Emmanuel – worked on debugging, researching and documentation

Appendix C

References

1. http://classes.engineering.wustl.edu/jee4980/
2. A.D. Wilcox, Engineering Design for Electrical Engineers, Prentice Hall, Englewood

Cliffs, N.J., 1990.
3. Professor Jason W. Trobaugh, D.Sc

