1. Compute the CSTR performance for a second order irreversible reaction
\[R_A = kC_A^2 \] as a function of \(D_A \) = \(kC_A \rho \) for \(\beta t = 0; 0.01; 0.1; 1.0; 5.0; 10; 100 \) using
2. Exchange in the mean model.
3. Recycle model.

Use established relations between \(\beta, h \) and \(R \).

Plot your results of \(x_A \) vs \(D_A \) with \(\beta t \) as parameter for each of the models. Also plot the conversion as a function of Damkoehler number at fixed \(\beta t \) for all models.

2. A porous sphere of radius \(R_0 \), whose pores are filled with fluid, initially at \(t = 0 \) has a uniform solute concentration throughout of \(C = C_i \). At time \(t = 0 \) the solute concentration at the outer surface of the sphere is increased to \(C = C_o \) and is maintained steady at that value. The resulting diffusion problem in the sphere has the following solution:

\[
\frac{C - C_i}{C_o - C_i} = 1 + 2R_0 \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin\frac{n\pi r}{R_o} e^{-Dn^2\pi^2t/R_o^2}
\]

where \(R_o = \) sphere radius, \(r = \) radial position in the sphere, \(t = \) time.

Now consider solute A and solute B which undergo an instantaneous chemical reaction
\[aA + bB \rightarrow P. \] The sphere initially contains A at \(C_{Ai} \) and then at \(t = 0 \) is exposed to \(C_{Bo} \) at the surface:

a) develop an expression for the position of the reaction interface as a function of time
b) find the time necessary for reacting i) 50%, ii) 90% and iii) 99% of A in the sphere.
c) illustrate the above using \(R_o = 0.5 \) cm; \(C_{Ai} = 10^{-3} \) (mol/cm\(^3\))
\[D_A = D_B = 10^{-5} \left(\frac{cm^2}{s} \right); a = 1, b = 2, C_{Bo} = 10^{-3} \left(\frac{mol}{cm^3} \right). \]