

ChE 477

Test 3

Fall 1995

Time:

2 hours

<u>Problem 1</u> (40%)

A company is considering putting some insulation on a steam pipe to reduce the heat losses. Two choices are available:

Thickness	Installed Cost	Savings in Energy Costs	
1"	\$ 500	\$160	
2"	\$1000	\$300	

The insulation will last 10 years. The company expects a 10% return (on after tax profits) on its investments. The tax rate is 35%. The company is very profitable and expects to be so for the next 10 years. Straight line depreciation is used.

- What is the incremental return on investment (On an after tax basis)? Based on this, which thickness should be chosen?
- 10 b) Based on a venture profit analysis, which thickness do you recommend? Show all your calculations with explanation.
- Which insulation is recommended based on a net present worth analysis? You can use discrete cash flows and discrete interest rate.

<u>Problem 2</u> (25%)

A company is interested in purchasing a computer. Two choices are available for payment.

- a) \$4700 on delivery
- b) \$1100/yr. for five years. Payments to be made at the end of each year. The first payment is due at end of the first year.

The company can borrow money at 6% effective annual interest rate. Which option should it elect? Why?

<u>Problem 3</u> (35%)

The pumping costs associated with transporting a fluid in a pipe is given by

$$C_0 = 1000 \text{ V } \text{/year}$$

where

V = fluid velocity in ft/sec.

Cost of piping is given by

$$C_c = $2000 D + $1000$$

where D = diameter of pipe in inches. Annual depreciation charges are 10%. The interest rate is 9%. What is the optimum pipe diameter to use if we need to transport 1 ft³/sec of fluid? What is the resulting velocity of fluid in the pipe?

Solution to Test 3

Problem!

a) Venture Profit Analysis

Charge in Increase in Gross Projet by Living 2" versus $I'' = \Delta GP = 300 - 150 = 140/y$, Increase in depreciation = $\frac{$4000 - $4500}{10}$ = 450/yx50/yr

A Ch Increase in Net Porfit Before Taxes = \$140-9400 \$40,990

> Incroase in " After Toxes = \$ \$0(1- t) = \$ \$ \(\delta \cdot \(\lambda \cdot \)

> > = \$26.009585

A Added cost of interest = \$ 7000 x i- \$ 5200 i = \$9000x110 - + 570 x11

= \$ 100-50

Net Change in Ventere Profit = 58.5-50

Tence mothorse 2" insulation

30-21.5-8.5

LIBRARY

CUPY

(b) Incremental Reheman Investmen AI = \$1000 - 9500 = 9500 2(NPAT) = \$58.5 . AROTT = \$58.5

= 11.7%.
This is greater than 10%. Hence hoose 2" insulation

Basel on Net Present host

Change is the Cash Flows 2" versus 1" A(NPAT) = \$58.5/yr a pep) = \$50/yr · (Cash Flow) - \$108.5/yr

A Cash Flows year o year 1 2 year 10

\$1000-1520=9500 + \$ 108.5 + \$ 108.5

+ 9108-5

 $\Delta(NPW) = -500 + 108.5 \left[\frac{(1+1)^{10}}{(1)(1+1)^{10}} \right]$

= 166.8 = -246.4+4183.2

Sina this is greater than 0, As Choose 2".

(6)

Froblein 2

(9)

\$1100/year for 5 years

has a NPW given by

NPW= R (+i)^n-1

(+i)^n i

= 91100 (1+.06)^5 (0.06)

- 4633.cv

This is less than \$4700 demanded how Hence in choose the opher of paying

Co = \$ 1000 V /year, V = 40 43/sec

C = \$2000 D + \$1000

Let us use the benture prijet method.

(VC) Venture cost = Co + 12 C

Where he dep + interest chayes + mount = 0.10 + .09 + 0

 $VC = C_0 + 19C$

- \$ 1000.4.0×(12)2 +0.19 [\$ 2000 D+7 too.

 $= \frac{8.4009}{100} \times 45.836 + 380D + 190$ aive =0

 $\frac{dv_c}{dD} = -\frac{491672}{7^3} + 380 = 0$ [] = 9.88; in] = .823 ft

V = 1.877 Per lec

B. Joseph

ChE 477

Test 3

Open: Text & Bound Volume

of Lecture Notes

Time: 55 minutes

<u>Problem 1</u> (30%)

A company has \$1 million to invest. Two choices are available.

Project 1. Requires \$700,000 total investment and will generate a cash flow of

\$200,000/year for 5 years.

Project 2. Requires \$800,000 total investment and will generate the following cash flows:

<u>Year</u>	Cash Flow	
1	200,000	
2	400,000	
3	200,000	
4	300,000	

The company earns an average of 10% return on its other investments. The company has three options:

- 1) Invest in project 1
- 2) Invest in project 2
- 3) Keep the money in other investments at 10% interest rate

Which option maximizes the net present worth of the company? Explain your answer with calculations.

Problem 2 (25%)

A refinery has a crude distillation unit with a capacity of 45,000 barrels/day. A maximum of 20,000 b/day of crude 1 at \$40/barrel and 30,000 b/day of crude 2 at \$42/barrel are available. The distillation unit produces the following products per barrel of crude: (All yields are expressed in barrel/barrel)

Products	Yield from Crude 1	Yield from Crude 2	Product Price/Barrel
Naptha	.50	.60	\$50.00
Light Oil	.10	.20	\$40.00
Heavy oil	.40	.20	\$30.00

The maximum demand for naptha is 25,000 b/day, that for light oil is 7500 b/day and that for heavy oil is 15,000 b/day. Formulate an optimization problem to maximize the profit/day. Show all constraints. The independent variables are the amounts of crude 1 and crude 2 to be processed per day. **DO NOT TRY TO SOLVE THIS**. All I want are the objective function and the constraints.

Problem 3 (20 %)

The following problem was simulated using Aspen. But the calculations failed to converge. Explain why it cannot converge.

Design Specification: Mole fraction of C in vapor = 1%.

Vary: Temperature of the Flash.

Problem 4 (20%)

Consider the cyclohexanone process. A student notices that the waste stream containing C is small. So she decides to eliminate the (high boiler stripper) unit and sets up a process as follows:

However, this simulation fails to converge on the recycle calculations. Increasing the number of interations does not help. Explain why the simulation cannot converge.

Present Worthof Project 1

$$PW_1 = {}^{\$}1,000 \text{ K} - {}^{\$}700,00 \text{ K} + {}^{\$}200 \text{ K} + {}^{200} \text{ K} + {}^{20$$

Present Worth of Project2

$$PW_{2} = 4 ,000 K - 800 K + \frac{200 K}{1.1} + \frac{300}{(1.1)^{2}} + \frac{300}{(1.1)^{2}}$$

$$= 200 + 181.8 + 330.5 + 150.2 + 204.9$$

$$= 4 1067.4$$

Second project has a higher NPW.

Choose project 2. Better than keeping money in other investments.

x = crude 1 b/day processed

Constraints

Capacity: 0x+y < 45,000

3 4 20

Supply: (2) $2 \le 20,000$ $3 y \le 30,000$

demand: naptha $0.500x + 0.60y \le 25,000$ $0.10 \times + 0.20 y \le 7,500$ $0.40 \times + 0.20 y \le 15,000$

Phjedire Function:

Porfit perdag= (50x + 0.60y) x 50+ (10x+20y) x \$ 40+ (. (60x+. 20y) 0\$ 30.0 \$-

Note that feed contains more fraction of $C = \frac{0.5}{24.1 + 28.5 + 0.5}$ = 0.94 %

Evenily you took all feed with the uppor, the concentration of a in vapor cannot be greater Itan .94%.

Hence the design specification cannot be onet.

In this process, there is no outlet for the commenced in the looder. Hence it accumulates in the system. A steady state connot be reached. Hence Aspent connot fund a solution.

ChE 477 Test 3 Fall 1992

Open Textbook and Bound Volume of Lecture Notes Only 5% Neatness, Clarity and Organization

Problem 1 (50%)

A company must replace an existing pump. Two alternatives are being considered. Pump 1 will cost \$5,000 and is guaranteed to last 5 years. It will cost \$1,000/yr. to operate (excluding depreciation charges). Pump 2 will cost \$6,000 and is expected to last 6 years and has operating expenses of \$800/yr. (excludes depreciation charges). The company expects an after tax return of at least 10% on its investments. The tax rate is 35%.

Which pump should be chosen based on purely economic considerations? You should consider the time value of money in your analysis. Note that the two pumps have different expected lives.

Problem 2 (20%)

A two-stage steam jet is used to maintain a distillation column operating at $1.0~\rm psi$ absolute. It is estimated that $1.0~\rm lbmole$ /hr. of air must be removed from the column. The leaving air contains water vapor at a pressure equivalent to the equilibrium vapor pressure of water at $60^{\circ}\rm F$. Estimate the lbs. of steam required per hour to operate the jet. What is the estimated cost of steam $$/\rm hr$?

All data needed are available in Peters and Timmerhaus.

Problem 3 (25%)

A concern borrows \$50,000 at an annual, <u>effective</u>, compound interest rate of 10 percent. The concern wishes to pay off the debt in 5 years by making 10 equal semi-annual payments. How much will each payment be? Interest is compounded semi-annually.

* air leaving the alumn

Solution to Test 3

Problem 1		
Cash Flaws	Pump 1	Pump 2
Initial Inv. Depreciarin	\$ 5000 5 years 1000/yr	\$ 6,000 6 years \$ 1000/yr
Operating costs	\$ 1000/yr	\$ 800/yr
Front Income Total Gross Profit	*P/yr P_2000	* P /y~ P- 1800
NPAT	(P-2000)x.65	(P-1200)*·65
Cah Flow	$ (P-2000) \cdot 6S + 1000 $ $= 65P-300 = R1$	(P-1800)*65+1000 =-65P-170=R2
· A Cash Flow	(2000-1800)*·65=	/2 -

Compare cost over a 5 year pensol. At end of 5 year period, Pump2 in still worth \$1000 Which will generate an additional cost flow then. NPW of Pump 1 = -5,000 + 165 R1 [(1+i)5-1] = -5000 + R1 (3.79) = -5000 + (°65P - 300) (379) = 2.463P-3863E137.0

NPW A Pump 2 = -6000 + R2 (3.79) + 1000 = -6000 + (65P-170)(3.79) + 621 = 2.463 P-6023.3 Pump 2 is slightly better. Hence choose Pump 2. Difference = \$1/4

Comparing Uniform Annual Costs

Tost of Pump 1.

Initial lost spread over 5 years $= \frac{5000}{3.79} = \frac{41319.2}{\text{yr}}$

Operating Expenses Re = 300/yr. (After tax)

Not = 1619.2/yr

Cost of Pumps

Capital = \frac{6000}{4.35} = \frac{9}{1377} / yr

Operating Exp = 170/yr

Take = \frac{1547}{47} / yr

Difference (Decrease of pump2) = \$71.3/yr
PW & decrease over 5 year perox = \$270.4

$$\left(\frac{5000}{3.79} + 300\right)$$
 3.79 $\left(\frac{6000}{4.35} + 170\right)$ 3.79

(19)

Problem 2

Vapor Preme of Heam water at 60°F from Steam Tobles, Fable 11, p.884.
= '2563 psi'

mole fraction of steem in mixture

= Vapor pressure

total premue

 $= \frac{0.2563 \text{ psi}}{2.0 \text{ in a Hy} \times \frac{1 \text{ psi}}{2.036 \text{ in}}} = 0.2563$

Mode fraction air = .7437

Mondes of air = 2000 stor 1 lbmdes/hr 2818 lbmay 16

: Total flow = 1 com/m 1.344 lbmoles/m

Total weight man fla

= ·80 Ubmdes 28lb · 20 lbm × 32 lb hr N2 x Ibmat - 20 lbm × 32 lbn

- 344 lbm. H20 x 18 lby

= 35. lbs for

Wt./. noncondensielle = :80 x 28 + . 20 x 32 = 0.82 \$

35 = 82 %

57 Stetem redex = 63 lbs x 35 lb/n

hr x 10 lbs mx
= 220.5 lbs/m

Cost of steam = \$\frac{1.5 - 3.20}{1000lb} \\
\text{p.875}, \text{p.77}

using an average figure \$2.35/1000le

ast of steam recolved

= 220.5 lbs x \frac{2.35}{1000 lbs}

= \$\frac{0.518}{pr}\$

Sholdem 3

$$000.10 = (1 + \frac{in_{m}}{2})^{2} - 1$$

$$50,000 = R \left(\frac{1 + \frac{1}{2}nom}{2}\right) - 1$$

$$= 7.768 R$$

$$R = 64.36.65$$

0.20

Open Text and Bound Volume of Lecture Notes

Time: 55 minutes

Note: 5% is reserved for neatness and clarity

Problem 1 (30%)

A multiple effect evaporator is to be used for evaporating 400,000 lb. of water per day (300 days/year) from a salt solution. The total initial cost for the first effect is \$18.000, and each additional effect costs \$15,000. The life period is estimated to be 10 years and salvage value at the end of the life period may be assumed to be zero. Straight-line depreciation may be used. Fixed charges (\$/year) (other than depreciation) are 15% of the initial cost of equipment. Steam costs \$0.50 per 1000 lbs. Pounds of water evaporated per pound of steam equals 0.85 x number of effects. Power costs associated with each effect are shown below:

Number of Effects	Total Power Cost (per 100 lb. of water)
1	\$0.10
2	0.15
3	0.17

All other costs are independent of the number of effects. How many effects should be used for minimum annual cost?

Problem 2 (35%)

4 to 10

A chemical company is considering replacing a batch-wise reactor with a modernized continuous reactor. The old unit cost \$40,000 when new 5 years ago, and depreciation has been charged on a straight-line basis using an estimated service life of 15 years and final salvage value of \$1000. It is now estimated that the unit has a remaining service life of 10 years and a final salvage value of \$1000.

The new unit would cost \$70,000 and would result in an increase of \$5000 in the gross annual income. It would permit a labor saving of \$7000 per year. Additional costs for taxes and insurance would be \$1000 per year. The service life is estimated to be 12 years with a final salvage value of \$1000. All costs other than those for labor, insurance, taxes, and depreciation may be assumed to be the same for both units. The old unit can now be sold for \$5000. What actual return on the incremental investment (before taxes) is realized if the replacement is made?

Problem 3 (30%)

A separation tower has an average liquid flow rate of 90 lb/hr, a vapor flow rate of 100 lb/hr and operated at 20 psig. The liquid density is $35\ lb/ft^3$ and vapor density is $.075\ lb/ft^3$. The viscosity of the liquid is 1 centipoise.

What type of a column (packed bed or plate type) should be used for this application? Why? Estimate the diameter required for the column.

Problem 1

Total, cost/year = 400,000 (by x library yr (185x) in

× 9.50 =

Ann Capital cost = 18000 + (X-1) 15,000

At Deprecial = 10% Rixed charges = 15%

Taal Ann. Cap- cost = [18,000 + (x-1)15,000] *25

Power cost = 400,000 by 300 day * 300 day x 160 lb = 1,200,000 tx)/4r

 $= \frac{4500}{1,200,000} + 51,200,000 gf(x) + [18,000]$ $+ (x-1) + [15,000] \cdot 25$

1 effet = 60,000 + 120,000 + 4500 - 195088

2 effect = 60,000 + 120,000 × 1.5 + 4500 + 3750 2223,544 , 85 × 2

3 effect = $\frac{60,000}{.85\times3}$ + 120,000×1.7 + 4520+3750

4 effect. = 60,000 + 120,000 x 20 + 4500 + 3×375

Joluhai L Test 3 /F96

Problem 2

Old Unit

New Cent

I= Inv. 40,000

70,000

Salvage 1000

1000

Rem. Servue life 10 yrs

Present Market Value = 5,000 : Annual Depreciation = \$5000-\$1000

= \$400/yr

(Always use market value for depreciation)

So Increase in Sales in ame = 7 5,000 (by replacing unit)

Incre Depreceation for New Unil = 79000-\$1000 = \$ 5750 /yr

Increased appreciati costs = 5750-400 = \$5350/97

Labor saving = \$ 7000/yr.

Net charge in Old Profit before taxes

= 5000 + 7000 - 5350 - 1000

= \$5650/yr

Incremental Involvent Required = 70,000-5,00

LIBRARY COPY DONN' Rom

(105

Rehm - Incremental Investment

$$= \frac{5650}{65000} \times 100 = 8.7\%$$

(106)

Problem 3

Assume packod tower, check for flooding, compute decimeter

 $\frac{L}{G}\sqrt{\frac{P_L}{P_G}} = \frac{90 \text{ lb/hr}}{100 \text{ lb/hr}}\sqrt{\frac{2075}{55}}$

- .033

Form lechere notes, using Fig 19 (Frank)
(Assuming Up & 025 in /st)

 $\frac{G^2 F \mu^2}{P_6(P_6-P_6)g} = .035$

F = 155 for Raschip rings 3/4"

 $16^{2} = .035 \times .075 \times (55 - .075) \cdot 37.2$

 $G = 0.179 \frac{lb}{sft^2}$

Cross Sech: Arca = 0.179 16 100 16 mm 0.179 16 x 3

= 0.155 H2

D = 44 ft

Check Merderip:

Max liquid flow per victority

> 2 gpm

ft=2

Achol leg velocity = 90 lb x 61hr x 1 ft 1 hr 60m 55 lb

x 75 gns

= 120 get/m gpm

i. lig velocit = 0.20 gpm -155 ft² = 1.31 gpm/ft²

Hence a slightly smaller deameter in needed.

Since deemeter is so small, facted Celumn in alfintely preferred.

Open Text, Bound Copy of Lecture Notes

Time: 55 Minutes

5% Reserved for Neatness, Clarity, etc.

Problem 1 (15%)

Some of the costs associated with a plant for producing acetylene from natural gas are given below. Classify each item as:

- a. Fixed capital cost.
- b. Working capital cost.
- c. Operating cost.
- d. None of the above.
- 1. Natural Gas.
- 2. Steam.
- 3. Steam Plant.
- 4. Electricity.
- 5. Solvent Inventory
- 6. Solvent Makeup.
- 7. Operating Labor.
- 8. Construction Labor.
- 9. Contractor's Fee for Plant Construction.
- 10. Real Estate Rent.
- 11. Real Estate Purchase.
- 12. Interest Payments on Borrowed Money.
- 13. Depreciation.
- 14. Royalties.
- 15. Waste Treatment Plant.

Problem 2 (15%)

The operating costs associated with a sulfuric acid plant are given below.

Fixed Capital Investment = \$10 Million

Working Capital = \$ 1 Million

Annual Sales = \$ 5 Million/Year

Annual Operating Costs = \$ 3 Million/Year (Excluding Depreciation)

Estimated Life = 10 Years

Salvage Value = 0

77

Straight-line Method of Depreciation is Used.

Tax Rate

Compute the following: (#/yr)

- 1. Gross Profit.
- 2. Net Profit.
- 3. Net Profit After Taxes.
- 4. Total Cash Flow From the Project.

Problem 3 (30%)

An existing pump has a book value of \$8,000 and market value of \$4,000. A new pump will cost \$6,000. The new pump will reduce operating costs (excluding depreciation) by \$500/year. The company expects 10% return on its investments after taxes. The tax rate is 33%.

- a. If both the existing pump and the new pump have a remaining life of ten (10) years, should the replacement be made? Why or why not?
- b. If the old pump has a life of five (5) years and the new pump has a life of ten (10) years, should a replacement be made? Why or why not?

Problem 4 (25%)

A company has \$1 million to invest. Two choices are available.

Project 1. Required \$700,000 total investment and will generate a cash flow of \$200,000/year for five (5) years.

<u>Project 2.</u> Requires \$800,000 total investment and will generate the following cash flows:

Year	Cash Flow
1	200,000
2	400,000
3	200,000
4	300,000

The company earns an average of 10% return on its other investments. Should the company invest in any one of these projects? Which one? Why?

Problem 5 (10%)

A man deposits \$1,000 in his account at the bank which pays compound interest (compounded daily). If at the end of one (1) year the account holds \$1,060.00, what is the nominal and effective interest rates paid by the bank?

Solution To Test

Problem 1.

1. (Natural Gas	Operating	Cost C
2 - 01 -	00	C
3 a Steam Plant-	FC	a
	6 C	C
56 Solvent Inventory	WC	Ь
6 c Solvent makeup	0(د
7c Operating Cober	00	<
8 a Construction Leber	FC	a
9 a Contractors' Fee	FC	a
10 Reant	OC	C
11 a Red State Plus		۵
12e Interes	00	c
13c Depre	00	c
14e Royce		c
15a wast Tred Plan	4 FC	a

Capital Nead = Cost of new Pump-Marcet value of oldings = 46,000 - 44,000 = 42000.

Savings in Sp. Cost = $\frac{9500}{10}$ /yr

Thanks in Rep = $\frac{95000}{10}$ - $\frac{1}{4000}$ = $\frac{1}{600}$ - $\frac{1}{400}$ = $\frac{1}{200}$ /yr

20

Faving after dep = \$500-\$200/gr -2#300/gr Taren (33%) = \$99/67

saniy after tax = \$ 201/gr

ROII after Faxes = \$201/4r

= 10.05 % V

(a) yes, make Raplacement

Des because increased life meen lar serve (also dep difference is less).

Compare using Pet Present Dott Aller native 1. No Investment NPW = \$ 1,000 K

Alternative 2

NPW= \$300 K & (after initial inv) $+\frac{200 k}{4 r} \left[\frac{(1+i)^{n}-1}{i(1+i)^{n}} \right]$ じョ・ m=5

Afternative 3 NPW = \$2,000 K+ 1700 K + BAUOK + 200K + 300K = 200+ 181.81 +330.57+150.26 T 204.90 = \$1067.54 K

Choose Atterative 2 which menining NPW

Final Effective Interest Reta L'eff = 1060-7100 x 100 41000 = 6% reinel interette reta = in

nominal interests rute = in

(I+ in/365) = I+ ieff

365 In (1+ in/365) = lu (1+ie/s)
in = 5.827 %