ChE 477 Test 1

Closed Book, 55 minutes.

Up to 3 points given as bonus for neatness, clarity and organization of solution.

Problem 1 (10 points)

A 100 million lbs./year ammonia plant constructed in 1994 at a total cost of \$20 million. What is your best estimate of a 200 million lbs./year ammonia plant to be built in May 2000? Use attached page of cost indices taken from Chemical Engineering Magazine.

Problem 2 (10 points)

Consider the benzene separation process (see attached PID). Using attached table, determine the <u>vearly</u> operating labor cost for this unit in 2000.

Equipment Type	Operators/Equipment/Shift
Evaporators	.3
Vaporizers	.05
Furnaces	.5
Fans	.05
Blowers and Compressors	.15
Heat Exchangers	.1
Towers	.35
Vessels	0.
Pumps	.0
Reactors	.5

(Average Operator's Salary = \$42,000/yr in 1996)

For equipment such as pumps just count equipment plus spare as one item.

Problem 3 (10 points)

In the final design stage of a project, the question has arisen as to whether to use a watercooled exchanger or an air-cooled exchanger in the overhead condenser loop of a distillation tower. The information available on the two pieces of equipment are provided below:

	Initial Investment	Yearly Operating Cost
air-cooled	\$23,000	\$1,200
water-cooled	\$12,000	\$3,300

Both pieces of equipment have service lives of 12 years. For an internal rate of return

of 8% p.a., which piece of equipment represents the better choice? **Problem 4** (10 points)

See attached PID for benzene distillation. Answer the following questions:

- a. How is the level in the reflux stream V-102 controlled? (i.e., which valve (which flow) is adjusted to maintain the level constant)
- b. How is the level in the bottom of the column controlled?
- c. What is the purpose of stream 7, vent to flare?
- d. What is the purpose of stream 5 attached to pump P-102A?
- e. What utility is used in the exchanger E-104?

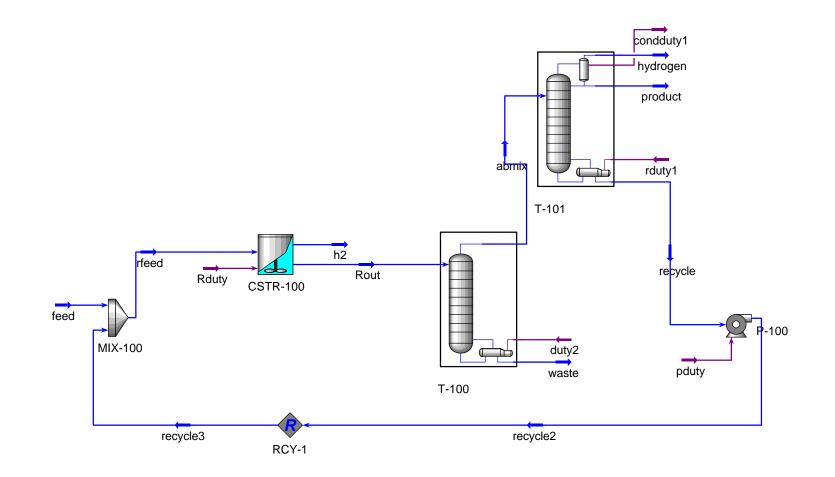
Problem 5 (10 points)

The PFD and stream summary for the cyclohexanone process is attached.

The following costs are given:

А,	cyclohexanol	\$59/lb mole
B,	cyclohexanone	\$125/lb mole
C,	high boiler	\$0/lb mole
	Hydrogen	\$0/lb mole

- a. What is the economic potential for this process expressed in \$/hr? (i.e., income from product sold cost of raw materials)?
- b. How much money is lost in the gas leaving the reactor? Would it be worthwhile to put in a recovery system to recover the A, B in this stream?
- c. How much money is lost in the A,B leaving with the waste stream?
- d. What is the maximum economic potential achievable?
- e. Suggest changes in the process that will improve the economic potential.

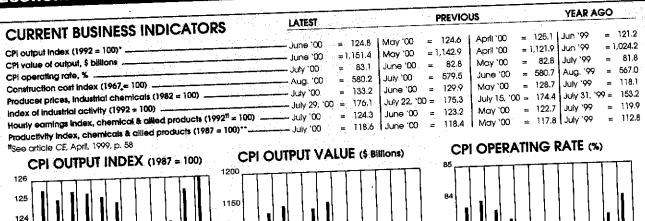


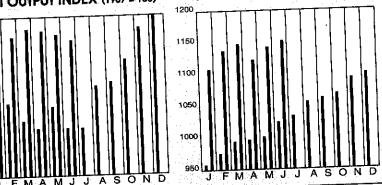
1

Case Name: E:\COURSES\CHE477\DESIGN\hysys\dp6bj.HSC

Workbook: Case (Main)

2	· IV/ 1 *		Case Name:	E:\COURSES\CHE477\I	DESIGN\hysys\dp6bj.H	SC
3	3 Washington University Unit Set: Field					
4	Date/Time: Mon Oct 09 12:04:23 2000					
5 6						
6 7	Workbook:	Case (Mair	1)			
8		0400 (-/			
9			Material Strean	ne		
10						
11	Name	feed	h2	Rout	abmix	waste
12	Vapour Fraction	0.0000	1.0000	0.0000	1.0000	0.0000
13	Temperature (F)	200.0 *	200.0	200.0 *	313.5	339.4
14	Pressure (psia)	300.0 *	300.0	300.0 *	14.70	14.70
15	Molar Flow (lbmole/hr)	9.984	9.167	10.99	10.19	0.7913
16	Mass Flow (lb/hr)	1000 *	23.81	1099	996.9	101.9
17	Liquid Volume Flow (barrel/day)	71.18	18.40	79.69	71.85	7.834
18	Heat Flow (Btu/hr)	-1.444e+06	2328	-1.310e+06	-9.686e+05	-9.719e+04
19	Molar Enthalpy (Btu/lbmole)	-1.446e+05	254.0	-1.192e+05	-9.502e+04	-1.228e+05
20	Comp Molar Flow (Hydro glen)ole/hr)	0.0000 *	9.1117	0.0806	0.0806	0.0000
21	Comp Molar Flow (cycHe((land))e/hr)	9.9840 *	0.0062	1.7523	1.6460	0.1064
22	Comp Molar Flow (CC6or(He)mole/hr)	0.0000 *	0.0491	8.9038	8.4586	0.4452
23	Comp Molar Flow (Highboilterno)le/hr)	0.0000 *	0.0000	0.2485	0.0088	0.2397
24	Name	product	recycle	hydrogen	rfeed	recycle2
25	Vapour Fraction	0.0000	0.0000	1.0000	0.0000	0.0000
26	Temperature (F)	214.7	240.6	214.7	204.8	242.9
27	Pressure (psia)	3.000	3.000	3.000	300.0	300.0
28	Molar Flow (lbmole/hr)	8.478	1.216	0.5000	11.20	1.216
29	Mass Flow (lb/hr)	832.9	122.6	41.37	1123	122.6
30	Liquid Volume Flow (barrel/day)	59.98	8.749	3.127	79.93	8.749
31	Heat Flow (Btu/hr)	-9.743e+05	-1.730e+05	-4.015e+04	-1.617e+06	-1.729e+05
32	Molar Enthalpy (Btu/lbmole)	-1.149e+05	-1.423e+05	-8.030e+04	-1.444e+05	-1.422e+05
33	Comp Molar Flow (Hydro (den) ole/hr)	0.0001	0.0000	0.0804	0.0000	0.0000
34	Comp Molar Flow (cycHe(land)e/hr)	0.4242	1.2067	0.0151	11.1906	1.2067
35	Comp Molar Flow (CC6or()) mole/hr)	8.0539	0.0003	0.4044	0.0003	0.0003
36	Comp Molar Flow (Highboilterno)le/hr)	0.0000	0.0088	0.0000	0.0088	0.0088
37	Name	recycle3				
38	Vapour Fraction	0.0000				
39	Temperature (F)	242.9 *				
40	Pressure (psia)	300.0 *				
41	Molar Flow (Ibmole/hr)	1.216 *				
42	Mass Flow (lb/hr)	122.6				
43	Liquid Volume Flow (barrel/day)	8.748				
44	Heat Flow (Btu/hr)	-1.729e+05				
45	Molar Enthalpy (Btu/lbmole)	-1.422e+05				
46	Comp Molar Flow (Hydro (den) ole/hr)	0.0000 *				
47	Comp Molar Flow (cycHe(land)e/hr)	1.2066 *				
48	Comp Molar Flow (CC6or(le)mole/hr)	0.0003 *				
49	Comp Molar Flow (Highbøiternøle/hr)	0.0088 *				
50						

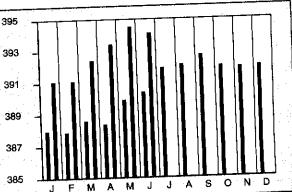

Economic Indicators


123 122

121 120

119

118


S Ь F MA

1999 2000

*To convert to 1987 = 100 base, divide by 91.302 and multiply by 100. *Revised as of Jan. 1987 -- multiply values from Jan. 1982 to Jan. 1987 by 0.9586 to convert to values starting with Jan. 1987. **To convert to 1977 = 100 base, multiply by 1.478; P = Pretiminary; R = Revised. For an explanation and additional information; call: 212-621-4678. Data provided by DRI, Lexington, Mass.

CHEMICAL ENGINEERING PLANT COST INDEX

	June '00		June '99 Final	(1957-59 = 100)	393
	Prelim.	Final	390.4	Annual Index	
CE INDEX	394.1	394.5		Allinger Index	
Equipment	438.5	439.0	434.9	1993 = 359.2	391
Heat exchangers & tanks	372.5	372.8	370.6		1.1.1.1.1.1
Process machinery	438.8	438.9	431.8	1994 = 368.1	19. juli
Pipe, valves & fillings	546.2	547.2	540.4	1995 = 381.1	389
Process instruments	666.6	666.6	657.9		
Pumps & compressors	339.7	339.9	335.8	1996 = 381.7	007
Electrical equipment	405.5	407.4	410.9	1997 = 386.5	387
Structural supports & misc	297.9	297.9	292.6	1998 = 389.5	
Construction labor	385.2	386.4	381.9		385
Buildings Engineering & supervision		340,7	339.8	1999 = 390.6	000

MARSHALL & SWIFT EQUIPMENT COST INDEX

Quarter	Steam power 1994 = 993.4 1995 = 1,027.5	1,059.6 19	1,050.2 97 = 1,05 98 = 1,06	6.8
1060 tst 2nd 3rd 4th	Mining, milling Refrigerating	1,125.5 1,299.2	1,116.9 1,288.8	
1065	Related industries Electrical power	989.5	979.4	963.3
1070	Rubber	1,176.3	1,167.3	1,155.8
1075	Petroleum products	1,147.7	1,138.8	1,127.7
	Paint Paper	1,107.1 1,055.2	1,047.1	1,029.9
1080	Glass	1,014.3	1,006.2 1,097.5	1.082.0
	Ciay products	1,088.1	1,079.5	1.067.2
1085	Chemical	1,084.7	1,076.2	1,063.7
1090	Cement	1,092.0	1,083.5	1.070.5
1095	Process industries,	1,102.2	1,093.5	1,060.7
1095	M & S INDEX	1,089.0	1,080.6	1,065,0
1100		2ndQ 2000	1st9 2000	1999
and the second			1	2ndQ

VATAVUK AIR POLLUTION CONTROL COST INDEXES (VAPCCI) $(1 + Output = 1994 = 100.0)^{1}$

OONTROL	¹ Inde 1997	ex values ha 1998 (Avg.)2	ave been r Srd Q '99	418 Q '99	Ø (002	Q '00 ³
Carbon adsorbers	104.7	103.6	100.3	101.4	104.7	-108.8 112.3
Catatytic incinerators	107.7	106.5	100.5	105.7	104.7	112.0
Electrostatic	108.8	109.2	100.5	99,6	100.9	101.2
precipitators	106.2	109.5	111.6	112.2	112.3	112.3
Fabric filters ⁴	105.8	103.6	98,9	100.0	102.3	105.3
Flares Gas absorbers	107.6	109.7	110.7	111.7	112.5	113.3
Mechanical collectors ⁴		111.0	121.4	121.5	121.7	121.8 106.5
Refrigeration systems	106.1	107.6	105.5	105.3	186.3	100.5
Regenerative thermal oxidizers	107.9	108.9	107.8		108.4	
Thermal Incinerators	109.4	110.5	107.6	107.2	107.8	
Mint parthbatt	109.0	109.7	108.5	109.0		115.3
² Each annual average is	the arith	metic mean	of the qu	arterly in	dexes for	that year

³All first quarter 2000 indexes are preliminary.

⁴ For fabric filters and mechanical collectors, each quarterly value shown is the average of the Producer Price Indexes (PPIs) for the three months in question, divided by the average of the PPIs for January, February, and March 1994 (i.e., first quarter 1994). Note: For a detailed explanation of the development and use of the VAPCCI, see Chem. Eng., December 1995, pp. 88-95.

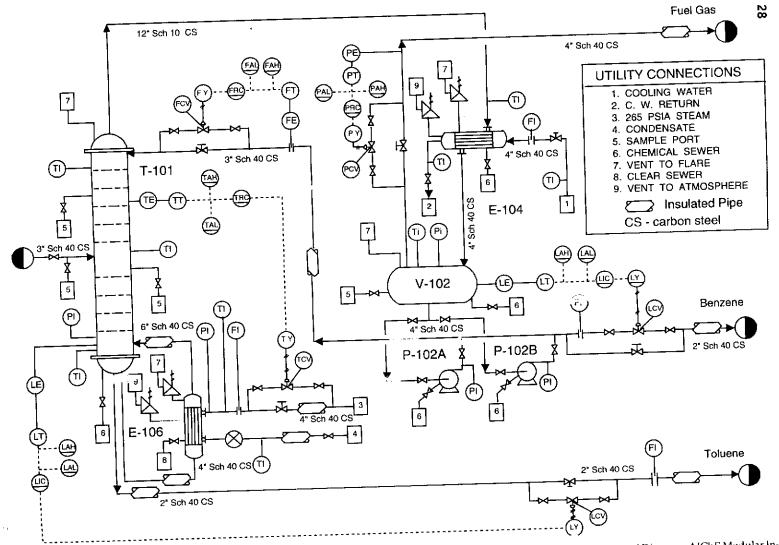


Figure 1.7 Preliminary piping and instrumentation diagram for benzene distillation. (Adapted from Kauffman, D., Flow Sheets and Diagrams, AIChE Modular Instruction, Series G: Design of Equipment, series editor J. Beckman, AIChE, New York, 1986, vol 1, Chapter G.1.5, AIChE copyright, © 1986 AIChE, all rights reserved)