Homework Nine

1. Let
 \[T : \mathbb{R}^3 \to \mathbb{R}^4 \]
 be a linear transformation defined as follows
 \[
 \begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
 \end{pmatrix}
 \mapsto
 \begin{pmatrix}
 x_1 + x_2 \\
 x_2 + x_3 \\
 x_3 - x_1 \\
 2x_1 + x_2 - x_3
 \end{pmatrix}
 \]
 (a) Write down the range and null space of \(T \) as span of a set of linear independent vectors.
 (b) Obtain the cartesian equation of the range and null space.
 (c) Choose a point \(p = (3, 5, 2, 1)^T \) in the range of \(T \). Describe the pre image of \(T \), i.e. find
 \[S = \{ x \in \mathbb{R}^3 : T(x) = p \}. \]
 (d) Is the space \(S \) (in part (c)) a vector space? If not, what is it?
 (e) Let \(P \) be a plane in \(\mathbb{R}^3 \) described by the equation
 \[x_1 - x_3 = 0. \]
 i. Calculate the image of \(P \) under the transformation \(T \), call it \(T(P) \).
 ii. Is \(T(P) \) a vector space, justify with a reason. If not, what is it?

2. Let
 \[A = \begin{pmatrix}
 2 & 5 & 9 \\
 3 & 2 & 6 \\
 1 & -3 & 8
 \end{pmatrix}, \]
 and let \(b \) be a \(3 \times 1 \) vector with the property that \(b, Ab, A^2b \) are linearly independent, so that
 \[B = \{ b, Ab, A^2b \} \]
 form a basis of \(\mathbb{R}^3 \). Define a linear transformation
 \[T : \mathbb{R}^3 \to \mathbb{R}^3 \]
 where
 \[A^{n-1}b \mapsto A^n b, n = 1, 2, 3, 4, \ldots \]
 (a) If a vector \(v \) has coordinates \((1, 2, 5) \) with respect to basis \(B \), i.e.
 \[v = b + 2Ab + 5A^2b \]
 find coordinates of \(T(v) \) with respect to the same basis \(B \).
 (b) If a vector \(v \) has coordinates \((\alpha, \beta, \gamma) \) with respect to basis \(B \), i.e.
 \[v = \alpha b + \beta Ab + \gamma A^2b \]
 find coordinates of \(T(v) \) with respect to the same basis \(B \).

3. Let \(P_3(t) \) be the set of all polynomials in \(t \) of degree \(\leq 3 \). Define a linear transformation
 \[T : P_3(t) \to P_3(t) \]
 where
 \[p(t) \mapsto \frac{d}{dt} p(t). \]
(a) Calculate the range and null space of T.

(b) Let
\[B = \{ 1, 1 + t, t - t^2, t^3 \} \]
be a basis of $P_3(t)$. If a polynomial $p(t)$ has coordinates $(\alpha_1, \beta_1, \gamma_1, \delta_1)$ with respect to the basis B. Calculate the coordinates $(\alpha_2, \beta_2, \gamma_2, \delta_2)$ of $T(p(t))$ with respect to B.

(c) Write down a matrix M such that
\[
M \begin{pmatrix} \alpha_1 \\ \beta_1 \\ \gamma_1 \\ \delta_1 \end{pmatrix} = \begin{pmatrix} \alpha_2 \\ \beta_2 \\ \gamma_2 \\ \delta_2 \end{pmatrix}
\]
for all possible choices of coordinates $\alpha_1, \beta_1, \gamma_1$ and δ_1.

4. Let $P_3(t)$ be the set of all polynomials in t of degree ≤ 3, and let $P_2(t)$ be the set of all polynomials in t of degree ≤ 2. Define a linear transformation
\[T : P_2(t) \to P_3(t) \]
where
\[p(t) \rightarrow \int p(t) \, dt. \]

(a) Calculate the range and null space of T.

(b) Let
\[B_1 = \{ 1, 1 + t, t - t^2, t^3 \} \]
be a basis of $P_3(t)$ and let
\[B_2 = \{ 1, 1 + t, t - t^2, t^3 \} \]
be a basis of $P_2(t)$. If a polynomial $p(t)$ has coordinates $(\alpha_1, \beta_1, \gamma_1)$ with respect to the basis B_2. Calculate the coordinates $(\alpha_2, \beta_2, \gamma_2, \delta_2)$ of $T(p(t))$ with respect to B_1.

(c) Write down a matrix M such that
\[
M \begin{pmatrix} \alpha_1 \\ \beta_1 \\ \gamma_1 \end{pmatrix} = \begin{pmatrix} \alpha_2 \\ \beta_2 \\ \gamma_2 \end{pmatrix}
\]
for all possible choices of coordinates α_1, β_1 and γ_1.

5. Consider the ordinary differential equation
\[\dot{x} = Ax + bu, \quad y = c^T x \]
where $x(0) = 0$, $c = (1 \ 0)$,
\[A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \]
and
\[b = \begin{pmatrix} 0 \\ 1 \end{pmatrix}. \]

The solution $y(t)$ can be written as
\[y(t) = \int_0^t e^{A(t-\tau)} b u(\tau) d\tau. \]
(a) Assume $u(t) = \alpha + \beta t$ for $\alpha, \beta \in \mathbb{R}$, calculate $y(t)$ in terms of α and β and show that it is a polynomial of degree ≤ 3, i.e.,

$$y(t) = \alpha_0 + \alpha_1 t + \alpha_2 t^2 + \alpha_3 t^3.$$

(b) Define a linear transformation from \mathbb{R}^2 to \mathbb{R}^4 as follows

$$T : \mathbb{R}^2 \rightarrow \mathbb{R}^4$$

where

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} \mapsto \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}.$$

Calculate the range and the null space of T.

6. Let us define

$$A = \begin{pmatrix} -2 & 1 \\ 0 & -3 \end{pmatrix}, \quad b = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Recall that an ordinary differential equation

$$\dot{x} = Ax + bu, \quad x(0) = 0$$

has the following solution

$$x(t) = \int_0^t e^{A(t-\tau)}bu(\tau)d\tau.$$

At $t = 1$, it follows that

$$x(1) = \int_0^1 e^{A(1-\tau)}bu(\tau)d\tau,$$

where $x(1) \in \mathbb{R}^2$, and $u(\tau)$ is a function defined in the interval $[0, 1]$.

(a) Calculate $x(1)$ for $u(\tau) = 1$, $\tau \in [0, 1]$.

(b) Calculate $x(1)$ for $u(\tau) = \tau$, $\tau \in [0, 1]$.

(c) Let c_1 and c_2 be two arbitrary real constants, we define

$$u(\tau) = b^T e^{-A^T \tau} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix},$$

and write $x(1)$ as

$$x(1) = e^A \left[\int_0^1 e^{-A^T \tau} \begin{pmatrix} c_2 \\ c_1 \end{pmatrix} d\tau \right].$$

i. Calculate the 2×2 matrix

$$M = \left[\int_0^1 e^{-A^T \tau} \begin{pmatrix} c_2 \\ c_1 \end{pmatrix} d\tau \right]$$

and check its rank. Is it 2?

ii. Calculate the 2×2 matrix

$$M = \left[\int_0^1 e^{-A^T \tau} \begin{pmatrix} c_2 \\ c_1 \end{pmatrix} d\tau \right]$$

taking the matrices A and b as

$$A = \begin{pmatrix} -2 & 0 \\ 0 & -1 \end{pmatrix}, \quad b = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

and check its rank. Is it 2 or a 1?
iii. Choose
\[x(1) = \begin{pmatrix} 7 \\ 9 \end{pmatrix} \]

and taking \(M \) as in part (i), calculate
\[\begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = M^{-1} e^{-At} x(1) \]

and hence calculate
\[u(\tau) = y^T e^{-AT \tau} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} . \]

Remark: the constructed \(u(\tau) \) is the forcing function (also called the control) that drives the state from \(x(0) = (0 \quad 0)^T \) to \(x(1) = (7 \quad 9)^T \).

7. Let us define
\[A = \begin{pmatrix} -2 & 1 \\ 0 & -3 \end{pmatrix}, \quad c^T = (1 \quad 0), \]

and consider an ordinary differential equation of the form
\[\dot{x} = Ax, \quad y = c^T x, \quad x(0) = x_0. \]

Recall that \(y(t) \) is given as follows
\[y(t) = c^T e^{At} x_0. \]

(a) Calculate \(y(t) \) assuming
\[x_0 = \begin{pmatrix} 5 \\ 7 \end{pmatrix} . \]

(b) We would now like to calculate \(x_0 \) given \(y(t) \). This is done as follows:
\[y(t) = c^T e^{At} x_0 \]
implies that
\[cy(t) = c c^T e^{At} x_0 \]
which further implies that
\[e^{AT} cy(t) = e^{AT} c c^T e^{At} x_0. \]

Integrating both sides with respect to \(t \) in the interval \([0 \quad 1]\) we obtain
\[\int_0^1 e^{AT} cy(t) dt = \left[\int_0^1 e^{AT} c c^T e^{At} dt \right] x_0. \]

i. Calculate the \(2 \times 2 \) matrix \(N \) given by
\[N = \left[\int_0^1 e^{AT} c c^T e^{At} dt \right] \]
and check its rank. Is it \(2 \)?

ii. Choose \(y(t) \) in part (a) and calculate
\[\xi = \int_0^1 e^{AT} cy(t) dt. \]

iii. Writing \(\xi = N x_0 \), calculate \(x_0 = N^{-1} \xi \).

The matrices \(M \) and \(N \) in the problems 6 and 7 are called ‘Controllability’ and ‘Observability’ Gramians respectively.