1. Verify by explicit differentiation that

\[x(t) = \int_0^t e^{A(t-\tau)} b \ u(\tau) \ d\tau \]

would satisfy the ordinary differential equation

\[\dot{x}(t) = A \ x(t) + b \ u(t), \]

where \(x(0) = 0. \)

2. Let \(A \) be a \(n \times n \) matrix with eigenvalues at \(\lambda_1, \lambda_2, \lambda_3, \ldots, \lambda_n. \) Show that

\[det \ A = \lambda_1 \lambda_2 \lambda_3 \ldots \lambda_n, \]

and

\[trace \ A = \lambda_1 + \lambda_2 + \lambda_3 + \ldots + \lambda_n. \]

3. Let \(A \) be a \(3 \times 3 \) matrix with distinct eigenvalues at \(\lambda_1, \lambda_2, \lambda_3. \) Define a \(6 \times 6 \) matrix \(B \) as follows

\[B = \begin{pmatrix} A & I \\ 0 & A \end{pmatrix}. \]

(a) If \(v_1, v_2 \) and \(v_3 \) are three linearly independent eigenvectors of \(A, \) show that

\[\begin{pmatrix} v_1 \\ 0 \end{pmatrix}, \begin{pmatrix} v_2 \\ 0 \end{pmatrix}, \begin{pmatrix} v_3 \\ 0 \end{pmatrix}, \]

are three linearly independent eigenvectors of \(B. \)

(b) Show that \(B \) does not have any other linearly independent eigenvectors. In fact the three other linearly independent generalized eigenvectors are

\[\begin{pmatrix} v_1 \\ v_1 \end{pmatrix}, \begin{pmatrix} v_2 \\ v_2 \end{pmatrix}, \begin{pmatrix} v_3 \\ v_3 \end{pmatrix}, \]

4. A \(3 \times 3 \) matrix \(A \) has eigenvalues repeated at \(-2, -2 \) and \(-2\) and a single chain of generalized eigenvectors at

\[\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \]

(a) Calculate \(e^{At} \) from this data.

(b) Can you write down the matrix \(A \) from this data?

5. Let \(A \) be a \(2 \times 2 \) matrix with eigenvalues repeated at \(0.3, 0.3. \) Calculate

\[\sum_{j=1}^{N} j \ A^{j-1}, \text{ and } \sum_{j=1}^{\infty} j \ A^{j-1}, \]

in terms of \(A. \)