Hint for H. W. 6

1. \(d \)

\[
\begin{pmatrix}
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} = 0
\]

This is a nilpotent matrix.

1. \(e \)

\[
\begin{pmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}
\]

is not nilpotent

\[
\begin{pmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}
\]

I would use Matlab to compute its exponential.
(2) ⑤
If A has eigenvalues at $\lambda_1, \lambda_2, \lambda_3$

$A^2 \quad \text{at} \quad \lambda_1^2, \lambda_2^2, \lambda_3^2$

(3) ⑤
The matrix M has eigenvalue 12
repeating 4 times.

Choose $\lambda = 12$
Calculate $M - \lambda I$; we get a matrix.

If $MV_1 = \lambda V_1$

$MV_2 = \lambda V_2 + V_1$

we get $(M - \lambda I)V_1 = 0 \Rightarrow (M - \lambda I)^2 V_2 = 0$

$(M - \lambda I)V_2 = V_1$

Choose $V_2 : (M - \lambda I)V_2 \neq 0, (M - \lambda I)^2 V_2 = 0$

One choice is $V_2 = \begin{pmatrix} 1 \\ 10 \\ 0 \end{pmatrix}$; $V_1 = (M - \lambda I)V_2 = \begin{pmatrix} 33 \\ -60 \\ 45 \\ -12 \end{pmatrix}$
\[V_1 = \begin{pmatrix} 3 \newline -6 \newline 45 \newline -12 \end{pmatrix}, \quad V_2 = \begin{pmatrix} 1 \newline 0 \newline 0 \end{pmatrix} \]
is a chain of gen. eigenvectors.

\[V_1 = (M - 12 \mathbb{I}) \cdot V_2 \]
\[(M - 12 \mathbb{I})^2 \cdot V_2 = 0 \]

Likewise

\[V_3 = \begin{pmatrix} 315 \newline -756 \newline 639 \newline -180 \end{pmatrix}, \quad V_4 = \begin{pmatrix} 0 \newline 0 \newline 1 \end{pmatrix} \]
is another chain of gen. eigenvectors.

\[\Theta \]
(5) In this problem please do not manufacture a diagonal matrix. I am looking for a genuine (i.e. non diagonal) matrix. One way to do this is the following:

- Let A be any symmetric matrix. (Don't choose A to be diagonal).
- Eigenvalues of A are real, but could be negative. Write $B = \exp(A)$ ← Use MATLAB here.
- If λ is an eigenvalue of A
 - e^λ is an eigenvalue of B.
 - Hence eigenvalues of B are all positive.
- $B^T = (e^A)^T = e^{AT} = e^A = B$
 - Hence, B is also symmetric.
B is the required answer.

- Eigenvectors of B are all l.i. and orthogonal to each other (cf. property of symmetric p.d. matrices)
- Let P be the matrix of eigenvectors of B. Then
 \[P^T = P^{-1} \quad \text{because} \quad PP^T = I \]
 \[\text{property of orthogonal eigenvectors} \]
- \[P^{-1}BP = P^TBP \] is a diagonal matrix of eigenvalues of B.
Hint for Problem 6:

Assume that the matrix A has eigenvalues at λ_i with eigenvectors at v_i, for $i = 1, \ldots, n$. If the eigenvectors v_1, v_2, \ldots, v_n are linearly dependent it would follow that either $v_1, v_2, \ldots, v_{n-1}$ are linearly dependent or $v_1, v_2, \ldots, v_{n-1}$ are linearly independent and

$$v_n = \alpha_1 v_1 + \cdots + \alpha_{n-1} v_{n-1}.$$

It would follow that

$$Av_n = \alpha_1 Av_1 + \cdots + \alpha_{n-1} Av_{n-1},$$

which implies that

$$\lambda_n v_n = \alpha_1 \lambda_1 v_1 + \cdots + \alpha_{n-1} \lambda_{n-1} v_{n-1},$$

i.e.

$$v_n = \alpha_1 \frac{\lambda_1}{\lambda_n} v_1 + \cdots + \alpha_{n-1} \frac{\lambda_{n-1}}{\lambda_n} v_{n-1}.$$

Since v_1, \ldots, v_{n-1} are linearly independent it would follow that

$$\alpha_i = \alpha_1 \frac{\lambda_i}{\lambda_n},$$

for $i = 1, \ldots, n - 1$. Since the eigenvalues are all distinct, this would imply that $\alpha_i = 0$ for all $i = 1, \ldots, n - 1$. This would imply that v_n must be the zero vector which violates the assumption that v_n is an eigenvector and must necessarily be nonzero.

Hint for Problem 7:

1) We have $AP = PB$. Also $Bv = \lambda v$ which implies that $PBv = P\lambda v = \lambda P v$. Hence it follows that $A(Pv) = \lambda(Pv)$.

2) From Cayley Hamilton Theorem we have

$$A^3 - c_3 A^2 - c_2 A - c_1 I = 0.$$

Need to show that

$$A[v_1, v_2, v_3] = [v_1, v_2, v_3] \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ c_1 & c_2 & c_3 \end{pmatrix}.$$

This would imply

$$Av_1 = c_1 v_3, \quad Av_2 = v_1 + c_2 v_3, \quad Av_3 = v_2 + c_3 v_3.$$

The idea is to show the above three relations using the definition of v_1, v_2 and v_3 and the Cayley Hamilton Theorem. (Good Luck)

3) You need to define v_1, v_2, v_3, v_4, v_5 from the pattern in part 2 of the problem and then verify that it is correct.

Hint for Problem 8:

When matrices commute, you can use the binomial formula. Because one of the matrix is nilpotent, the binomial expansion stops after finitely many terms. Hope this helps.