W

L

Lecture 12
Processor Microarchitecture (Part 3)

Xuan ‘Silvia’ Zhang
Washington University in St. Louis

http://classes.engineering.wustl.edu/ese566/

Pipeline Hazards: RAW Data Hazards W

RAW data hazards occur when one instruction depends on a data value St
produced by a preceding instruction still in the pipeline. We use archi-
tectural dependency arrows to illustrate RAW dependencies in assembly
code sequences.

addiu

addiu

addiu

addiu

addiu

addiu

rl, r2, 1
r3, ri, 1
r4d, r3, 1

rl, r2, 1 B*-F —{}*I)

.
N
|
<
o
p=

r3, rl, 1 D——F—-[—~D<f g—ﬁM—ﬂ—'w

r4, r3, 1 D—F—-;—-DG]:@—-&M—{}W

Approaches to Resolving Data Hazards W

SIL.
e Expose in instruction set architecture

- expose data hazards in ISA forcing compiler to
explicitly avoid scheduling instructions that would
create hazards (i.e. software scheduling for
correctness)

e Hardware Scheduling

- hardware dynamically schedules instruction to avoid
RAW hazards, potentially allowing instructions to
execute out of order

e Hardware Stalling

- hardware includes control logic that freezes later
instructions until earlier instruction has finished
producing data value; software scheduling can still be
used to avoid stalling (i.e. software scheduling for
performance)

Approaches to Resolving Data Hazards W

SIL
« Hardware bypassing/forwarding
- hardware allows values to be sent from an earlier

instruction to a later instruction before the earlier
instruction has left the pipeline

e Hardware speculation

- hardware guesses that there is no hazard and allows
later instructions to potentially read invalid data;
detects when there is a problem, squashes and then re-
executes instructions that operated on invalid data

Expose in ISA

Insert nops to delay read of earlier
write. These nops count as real
instructions increasing
instructions per program.

addiu ri1, r2, 1
nop
nop
nop
addiu r3, ri, 1
nop
nop
nop
addiu r4, r3, 1

W

L

Insert independent instructions to
delay read of earlier write, and
only use nops if there is not
enough useful work

addiu ri1, r2, 1
addiu r6, r7, 1
addiu r8, r9, 1
nop
addiu r3, ri1, 1
nop
nop
nop
addiu r4, r3, 1

Hardware Stalling W]

St

Hardware includes control logic that freezes later instructions (in front
of pipeline) until earlier instruction (in back of pipeline) has finished
producing data value.

Pipeline diagram showing hardware stalling for RAW data hazards

addiu ri1, r2, 1
'addiu r3, r1, 1

addiu r4, r3, 1

Note: Software scheduling is not required for correctness, but can
improve performance! Programmer or compiler schedules independent
instructions to reduce the number of cycles spent stalling.

Datapath to Support Hardware Stalling

val_F 1 l J])] .
[A ————— A]
: CSig Table val DX Control val XM Control val MW Control
Stall Logic G_Dx'i |" Logic m‘lj” Logic WTD‘ Logic
--4--- FStage -t-+--ft--=--f------ D Stage -~ {-------- l X Stage -~~~ --- 1---}- M Stage------- i---lW Stage
, ¢ bmg__Dx
! —— it[250] _I :
' ¥ " j_tgen - : rf
pc F I]' f , \ _waddr W
L - ir[15:0) ' > ;! ! f
q br_tgen op0_DX result_sel X : wb_sel_M : -.\-Jr: W
reg w . —f] >
en T regfile -
. ir[20:16) ,
| N16L) (read) ——_ jopiDX
U [.
: T ‘
: | sapx ¥ sd XM
! opl —o
: _a’cl_[l X
: N
L ' v

imemreq. imemresp.

addr

data

dmemreq. dmemreq. dmemresp.

data addr data

Hardware Bypassing/Forwarding W
Sit

Hardware allows values to be sent from an earlier instruction (in back
of pipeline) to a later instruction (in front of pipeline) before the earlier
instruction has left the pipeline. Sometimes called “forwarding”.

Pipeline diagram showing hardware bypassing for RAW data hazards

addiu r1, r2, 1
addiu r3, rl, 1
addiu r4, r3, 1

Add Single Bypass Path T

Vi

CSig Table
Stall & Bypass
Logic

e A D Stage -~ {-------- E---l--XStage ------- :---l“MStage -------

wb_sel M

\ir[150]

\ ir[25:21]
regfile
ir[20016 (read)

en_F

\ir[15:0] sext

Y L 4
imemreq. imemresp. dmemreq. dmemreq. dmemresp.
addr data data addr data

Add All Bypass Paths T
SIL

v%_l, F IR : | -
: CSig Table val_DX Control val MW Control
' Stall & Bypass > i i
: i =k Logie [] ['] Lo
------- D Stage --{---------- ---l»- M Stage-------i---lw Stage
btarg DX !
\ ir[25:0] J N :
| j_tgen : rf
v op»l]_[bg)p é , _waddr_ W
L ir{15:0] sel_ ' ; ! rf
a br_tgen J\ OPO£ wh_sel M : _wen_W
> —i result |
| 11[2521] B e r M
regfile il — ‘D— ~D_» regfile
ir{20:16]) read N ' - write
ol (read) | L " (write)
[150] 0-;’(:
Ny sext > :
> N |
_DX !
opl_ opl " — .
byp_ _sel D !
sel_D > :
N :
bypass_from X : :
bypass_from_M N :
bypass_from W i '
v I l v v I

imemreq. imemresp. dmemreq. dmemreq. dmemresp.
addr data data addr data

RAW Data Hazards Through Memory W
St

So far we have only studied RAW data hazards through registers, but
we must also carefully consider RAW data hazards through memory.

sw rl, 0(r2)
lw r3, 0(r4) # RAW dependency occurs if R[r2] == R[r4]

sw rl, 0(r2)
lw r3, 0(r4)

11

Pipeline Hazards: Control Hazards W

St
Control hazards occur when whether or not an instruction should be
executed depends on a control decision made by an earlier instruction
We use architectural dependency arrows to illustrate control
dependencies in assembly code sequences.

Static Instr Sequence Dynamic Instr Sequence
addiu rl, r0, 1 addiu ri1, r0, 1
j foo j foo
opA addiu r2, r3, 1
opB bne rO, rl, bar
foo: addiu r2, r3, 1 addiu r4, rb5, 1
bne r0, rl, bar
opC
opD
opE

bar: addiu r4, r5, 1

12

Pipeline Hazards: Control Hazards W
St

The jump resolution latency and branch resolution latency are the
number of cycles we need to delay the fetch of the next instruction in
order to avoid any kind of control hazard. Jump resolution latency is
two cycles, and branch resolution latency is three cycles.

addiu ri1, r0, 1
j foo
addiu r2, r3, 1

bne r0, rl, bar

addiu r4, rb5, 1

13

Approaches to Resolving Control Hazards W

SIL
e Expose in ISA
- expose control hazards in ISA forcing compiler to
explicitly avoid scheduling instructions that would

create hazards (i.e., software scheduling for
correctness)

« Software predication

- programmer or compiler converts control flow into data
flow by using instructions that conditionally execute
based on a data value

14

Approaches to Resolving Control Hazards w

e Hardware speculation
- hardware guesses which way the control flow will go
and potentially fetches incorrect instruction; detects
when there is a problem and re-executes instructions

along the correct control flow

o Software hints

- programmer or compiler provides hints about whether
a conditional branch will be taken or not taken, and
hardware can use these hints for more efficient

hardware speculation

15

Expose in ISA W]

S
Expose branch delay slots as part of the instruction set. Branch delay o

slots are instructions that follow a jump or branch and are always
executed regardless of whether a jump or branch is taken or not taken.
Compiler tries to insert useful instructions, otherwise inserts nops.

addiu rl, r0, 1

;:]10 too Assume we modify the PARCv1
i instruction set to specify that J,
ZgB JAL, and JR instructions have a

single-instruction branch delay
slot (i.e., one instruction after a J,
JAL, and JR is always executed)

foo: addiu r2, r3, 1
bne r0, rl, bar

EZP and the BNE instruction has a

) g two-instruction branch delay slot

opD (i.e., two instructions after a BNE
P are always executed).

opE

bar: addiu r4, rb5, 1

Hardware Speculation W

SIL

Hardware guesses which way the control flow will go and potentially
fetches incorrect instructions; detects when there is a problem and
re-executes instructions the instructions that are along the correct
control flow. For now, we will only consider a simple branch prediction
scheme where the hardware always predicts not taken.

Pipeline diagram when branch is taken

addiu rl1, r0, 1
j foo

opA

addiu r2, r3, 1
bne rO, rl, bar
.opC

opD

addiu r4, r5, 1

17

Datapath/Control to Support Hardware Speculation TJ/
&

Vi | 1 . l .

CSig Table val DX Control val_XM Control val MW Control
Stall, Bypass, & N : . .
Squasﬁp]'_.ogic cs_DX i | e os_XM I | Lo cs_MV\" | Logic

it BT R D Stage -~ 1{-------- E---i--XStage ------- i---i-MStage ------- 5---}WStage
btarg_DX : :
\ ir{25:0] - N ; E
>]_tgen [. 1 1 rf
op0_byp é : \ _waddr W
L ir{15:0] —sel D ' ' T e ! rf
br_tgen opo_l)x : wb_sel M : _wen_W
_i 3 result |
f25:21 Bd N m MW
regfile il | regfile
\ir[20:16 (read) N ! (Write)
> ~Oop1_DX
15:0 ";m’ :
AL gext > '
f—b A '
_DX :
opl_ | opl — |
byp_ _sel D '
sel_D > :
Ya\ :
bypass_from X :
bypass from M X
bypass from W '
v v v I
imemreq. imemresp. dmemreq. dmemreq. dmemresp.
addr data data addr data

18

Pipeline Hazards: Structural Hazards W

St
Structural hazards occur when an instruction in the pipeline needs a
resource being used by another instruction in the pipeline. The PARCv1
processor pipeline is specifically designed to avoid any structural
hazards.

Let’s introduce a structural hazard by allowing ADDU, ADDIU, MUL,
and JAL instructions to write to the register file in the M stage instead of
waiting until the W stage. We would need to add another writeback
mux in the W stage and carefully handle bypassing.

addiu rl, r2, 1
addiu r3, r4, 1
1w r5, 0(xr6)
addiu r7, r8, 1

19

Approaches to Resolving Structural Hazards W

e Expose in ISA

- expose control hazards in ISA forcing compiler to
explicitly avoid scheduling instructions that would
create hazards (i.e., software scheduling for
correctness)

e Hardware stalling

- hardware includes control logic that freezes later
instructions until earlier instruction has finished
producing data value; software scheduling can still be
used to avoid stalling (i.e. software scheduling for
performance)

e Hardware duplication

- add more hardware so that each instruction can access
separate resources at the same time

20

Hardware Duplication

Add a second write port so that an ADDU, ADDIU, MUL, or JAL

W,

\
-

instruction can writeback to the register file at the same time as a LW.

Control

Logic

[
val MW Control
s MW Logic

o —iw Stage

rf
waddr W

rf
_wen_W
result

v

_wenl_W

rt
Jwaddrl_ W

v

. dmemreq. dmemresp.

I A .
CSig Table val_DX 2 val_XM
Control
Stall, Bypass, & - :
: DX Logic XM
Squash Logic cs._ cs_X1
piriuted sl ddedi D Stage -1~~~ o
btarﬁ__DX
h\irf25:0] J N
| j_tgen e
" op0_byp
ir{15:0) _SEI_[) :
| br_tgen op0_DX
—»]
irf25:21) P
N—
regfile o
irf20:16 read
ned2016L | (read) » N L opl
£[15:0 L
DL gext >
/—P
opl opl
b\'p: _sel D
sel_D >
bypass_from_X :
bypass_from_M ¢
bypass _from W ;
v l I v
imemreq. imemresp. dmemreq
addr data data

addr

data 21

Pipeline Hazards: WAW and WAR Name Hazards W
SIL

WAW dependencies occur when an instruction overwrites a register
than an earlier instruction has already written. WAR dependencies
occur when an instruction writes a register than an earlier instruction
needs to read. We use architectural dependency arrows to illustrate
WAW and WAR dependencies in assembly code sequences.

mul rl, r2, r3
addiu r4, r6, 1

addiu rl, rb5, 1

22

Introduce WAW Hazards with Iterative Multiplier W
SIL

The PARCv1 processor pipeline is specifically designed to avoid any
WAW or WAR name hazards. Instructions always write the registerfile
in-order in the same stage, and instructions always read registers in the
front of the pipeline and write registers in the back of the pipeline.

Let’s introduce a WAW name hazard by using an iterative variable
latency multiplier, and allowing other instructions to continue
executing while the multiplier is working.

mul rl, r2, r3
addiu r4, r6, 1
addiu rl, rb5, 1

23

Approaches to Resolving WAW and WAR Hazards w
SIL

e Software renaming

- programmer or compiler changes the register names to
avoid creating name hazards

e Hardware renaming

- hardware dynamically changes the register names to
avoid creating name hazards

e Hardware stalling

- hardware includes control logic that freezes later
instructions until earlier instruction has finished either
writing or reading the problematic register name

24

Estimating Cycle Time for Pipelined Processor T

Vi . 1 . l .
e v ot N S

StaclzlSig Tazlse & val_DX Control valLXM Control val MW Control
4 a ’ 3 . .
Squasi’lpLogic cs_DX i | Logic cs_XM ‘ | L cs_MW‘ | Eopic

) D Stage -~ {-------- l X Stage -~~~ E---f-MStage ----- E'"EWStage
btarg_DX X X
\ ir{25:0] J E E
> i_tgeﬂ " ' ! rf
> v A [1
op0_byp - . v _waddr_ W
ir{15:0) —sel D ' ! b sel ' rf
*| br_tgen l op0_DX : wh_sel M | _wen_ W
i —i result |
al MW
ir{25:21 | 1 [N
regfile v - | regfile
\iri20:16] | (read) JN ' (write)
> ~op1_DX
“p !
\ ir[15:0] sext 3 > ‘
Van - :
DX |
opl_ opl = 1
b\.'p_ _Sel_[) !
sel_ D > :
Za\ :
bypass_from_X; :
bypass_from M :
bypass_from W !
v ' v v I
imemreq. imemresp. dmemreq. dmemreq. dmemresp.

addr data data addr data

Questions?

Comments?

Discussion?

26

Acknowledgement

Cornell University, ECE 4750

27

