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Quiz: Adding a New Auto-Incrementing Load Instruction 
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Single-Cycle Processor Control Unit 
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Estimating Cycle Time—Longest Critical Path 
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Quiz: Adding a New Auto-Incrementing Load Instruction 
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FSM Processor Control Unit 
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Hardwired FSM 
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Control Signal Output Table 
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Vertically Microcoded FSM 
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Vertically Microcoded FSM 

•  Use memory array to encode control logic and 
state transition logic 
–  called control state 
–  more flexible than random logic 

•  Enable a more systematic approach to 
implementing complex multi-cycle instructions 

•  Microcoding can produce good performance 
–  if accessing the control store is much faster than 

accessing main memory 

•  Read-only control stores might be replaceable 
–  enable in-field updates 

•  Read-write control stores can simplify 
diagnostics and microcode patches 
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Estimating Cycle Time 
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PARCv1 Pipelined Processor 
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High-Level Idea for Pipelined Processors 
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High-Level Idea for Pipelined Processors 

•  Key pipeline traits 
–  multiple transactions operate simultaneously using 

different resources 
–  pipelining does not help the transaction latency 
–  pipelining does help the transaction throughput 
–  potential speed up is proportional to the number of 

pipelined stages 
–  potential speed up is limited by the slowest pipeline 

stage 
–  potential speed up is reduced by time to fill the 

pipeline 
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High-Level Idea for Pipelined Processors 
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Pipelined Processor Datapath and Control Unit 

•  Incrementally develop an unpipelined datapath 
•  Keep data flowing from left to right 
•  Position control signal table early in the diagram 
•  Divide datapath/control into stages by inserting 

pipeline registers 
•  Keep the pipeline stages roughly balanced 
•  Forward arrows should avoid “skipping” pipeline 

registers 
•  Backward arrows will need careful consideration 
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Pipelined Processor Datapath and Control Unit 
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Quiz: Adding a New Auto-Incrementing Load Instruction 
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Pipeline Hazards 

•  RAW data hazards 
–  an instruction depends on a data value produced by an 

earlier instruction 

•  Control hazards 
–  whether or not an instruction should be executed 

depends on a control decision made by an earlier one 

•  Structural hazards 
–  an instruction in the pipeline needs a resource being 

used by another instruction in the pipeline 

•  WAW and WAR name hazards 
–  an instruction in the pipeline is writing a register that 

an earlier instruction in the pipeline is either writing or 
reading 
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Proposed Solutions: Stalling and Squashing Instructions 

•  Stalling 
–  an instruction originates a stall due to a hazard, 

causing all instructions earlier in the pipeline to also 
stall. When the hazard is resolved, the instruction no 
longer needs to stall and the pipeline starts flowing 
again. 

•  Squashing 
–  an instruction originates a squash due to a hazard, and 

squashes all previous instructions in the pipeline (but 
not itself). We restart the pipeline to begin executing a 
new instruction sequence. 
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Control Logic with No Stalling and No Squashing 
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Control Logic with Stalling and No Squashing 

23 



Control Logic with Stalling and Squashing 
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Control Logic with Stalling and Squashing 
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Discussion? 
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