
Xuan ‘Silvia’ Zhang 
Washington University in St. Louis 

 
http://classes.engineering.wustl.edu/ese566/ 

Lecture 11 
Processor Microarchitecture (Part 2) 



Quiz: Adding a New Auto-Incrementing Load Instruction 

2 



Single-Cycle Processor Control Unit 

3 



Estimating Cycle Time—Longest Critical Path 

4 



Quiz: Adding a New Auto-Incrementing Load Instruction 

5 



FSM Processor Control Unit 

6 



Hardwired FSM 

7 



Control Signal Output Table 

8 



Vertically Microcoded FSM 

9 



Vertically Microcoded FSM 

•  Use memory array to encode control logic and 
state transition logic 
–  called control state 
–  more flexible than random logic 

•  Enable a more systematic approach to 
implementing complex multi-cycle instructions 

•  Microcoding can produce good performance 
–  if accessing the control store is much faster than 

accessing main memory 

•  Read-only control stores might be replaceable 
–  enable in-field updates 

•  Read-write control stores can simplify 
diagnostics and microcode patches 

10 



Estimating Cycle Time 

11 



12 



PARCv1 Pipelined Processor 

13 



High-Level Idea for Pipelined Processors 

14 



High-Level Idea for Pipelined Processors 

•  Key pipeline traits 
–  multiple transactions operate simultaneously using 

different resources 
–  pipelining does not help the transaction latency 
–  pipelining does help the transaction throughput 
–  potential speed up is proportional to the number of 

pipelined stages 
–  potential speed up is limited by the slowest pipeline 

stage 
–  potential speed up is reduced by time to fill the 

pipeline 

15 



High-Level Idea for Pipelined Processors 

16 



Pipelined Processor Datapath and Control Unit 

•  Incrementally develop an unpipelined datapath 
•  Keep data flowing from left to right 
•  Position control signal table early in the diagram 
•  Divide datapath/control into stages by inserting 

pipeline registers 
•  Keep the pipeline stages roughly balanced 
•  Forward arrows should avoid “skipping” pipeline 

registers 
•  Backward arrows will need careful consideration 

17 



Pipelined Processor Datapath and Control Unit 

18 



Quiz: Adding a New Auto-Incrementing Load Instruction 

19 



Pipeline Hazards 

•  RAW data hazards 
–  an instruction depends on a data value produced by an 

earlier instruction 

•  Control hazards 
–  whether or not an instruction should be executed 

depends on a control decision made by an earlier one 

•  Structural hazards 
–  an instruction in the pipeline needs a resource being 

used by another instruction in the pipeline 

•  WAW and WAR name hazards 
–  an instruction in the pipeline is writing a register that 

an earlier instruction in the pipeline is either writing or 
reading 

20 



Proposed Solutions: Stalling and Squashing Instructions 

•  Stalling 
–  an instruction originates a stall due to a hazard, 

causing all instructions earlier in the pipeline to also 
stall. When the hazard is resolved, the instruction no 
longer needs to stall and the pipeline starts flowing 
again. 

•  Squashing 
–  an instruction originates a squash due to a hazard, and 

squashes all previous instructions in the pipeline (but 
not itself). We restart the pipeline to begin executing a 
new instruction sequence. 

21 



Control Logic with No Stalling and No Squashing 

22 



Control Logic with Stalling and No Squashing 

23 



Control Logic with Stalling and Squashing 

24 



Control Logic with Stalling and Squashing 

25 



 
 
 

Questions? 
 

Comments? 
 

Discussion? 

26 



Acknowledgement 
 

Cornell University, ECE 4750 

27 


