W

L

Lecture 11
Processor Microarchitecture (Part 2)

Xuan ‘Silvia’ Zhang
Washington University in St. Louis

http://classes.engineering.wustl.edu/ese566/

Quiz: Adding a New Auto-Incrementing Load Instruction TJ

Draw on the datapath diagram what paths we need to use as well as St
any new paths we will need to add in order to implement the following
auto-incrementing load instruction.

lw.ai rt, offset(rs)

R[rt] < M| R|rs] + sext(offset) |; R[rs] <+ R[rs] + 4

r N
i To control unit
i_targ "
br_t
r_targ > mul
ir[15:0]
pe_plust —3|br_tgen > »
—> ir[25:0) _waddr
> Nr250] J— .
> }—D > +4 >]—tgen wb_sel ri,
4 _wen
ir25:21 *q l
pc_sel PC =" £il > t
- regfile
Nri2016) | (read) N S alu regfile
(write)
ir[15:0] i
N——> sext > T
) alu_func
op1l
imemreq. imemresp. dmemreq. | ¢! dmemreq.| |dmemresp.
addr | data data | addr| |data

Single-Cycle Processor Control Unit W
Sit

imem dmem
pc opl alu wb rf rf req req

inst sel sel func sel waddr wen val val
addu pc+4 rf + alu rd 1 1

addiu

mul pc+4 rf X mul rd 1 1

1w pc+4 sext + mem rt 1 1 1
SW

j j_targ - - - - 1

jal

jr jr - - - - 1

bne

lw.ai

Estimating Cycle Time—Longest Critical Path W
SIL

There are many paths through the design that start at a state element
and end at a state element. The “critical path” is the longest path across
all of these paths. We can usually use a simple first-order static timing
estimate to estimate the cycle time (i.e., the clock period and thus also

the clock frequency).

-
L

ir To control unit
j_targ >
br_tar
_larg > mul
ir[15:0] J
pe_plusd —3br_tgen
L ir[25:0]
> N[
1 pe | ir25:21]
pc_sel regfile
\ir20:16] | (read)
ir[15:0]
N—> sext >
opl alu_func
imemreq. imemresp. dmemreq. | ' dmemreq.| |dmemresp.

addr | data data | ad 1 data

Quiz: Adding a New Auto-Incrementing Load Instructio

lw.ai rt, offset(rs)

R[rt] < M| R[rs] + sext(offset) |; R[rs] < R[rs] + 4

t To control unit

o en c_sel
e
- c_en
‘g l << l ‘ >>
a2 DPC C
5 N
8
31
ol AN ;
lau_ | - alu_ _) IS
A func lau func alu rt
rf_wen —» rd
- T f £ add
C_ iau_ alu_ rf rf addr
YF gus_cn I bus_en Y‘_ bus_en bus_en _sel
. 2
alu func iau func wd_en l A‘— i,i‘b en
+4: A+4 si: sext(IR[15:0]) : .
+: A+B ts: IR[25:0] << 2 MAD_
+70 A+?B sis: sext(IR[15:0]) << 2
cmp: A ==B memreq. memreq. | memresp.
jte { A[31:28], B[27:0] } addr v data data

n\]é'g/

FSM Processor Control Unit W

St

We will study three techniques
for implementing FSM control
units:

e Hardwired control units are
high-performance, but

inflexible

e Horizontal pcoding
increases flexibility, requires
large control store

9260:026020

e Vertical pcoding is an
intermediate design point

Hardwired FSM

|5 State

State
Transition
Logic

Control
Signal
Logic

T

Control Signals Status Signals
(24) (1)

Control Signal Output Table W

Sit
FO: memreq.addr < PC; A < PC AQ: A < RF|[rs]
F1: IR+ RD Al: B «+ RF[rt]
F2: PC<«+ A+ 4, A < A+ 4; gotoinst A2: RF[rd] < A + B; goto FO
Bus Enables Register Enables Mux Func RF MReq

state pc iau alu f rd pc ir a b ¢ wd b ¢ iau alu sel wenval op

FO 1 1 - 1 r
F1 1 1 - -
F2 1 1 1 -~ 44 - _
A0
Al

A2

Vertically Microcoded FSM

W

] | 9

Next State Encoding

n : increment uPC by one

d : dispatch based on opcode
f : goto state FO

b : goto state FO if A ==B

i—eq

|

FO
opcode —> decoder
R’
+1
|§ ulPC
Control Next
Signals State
l l
bus || mux
en sel
RN I AR AR

Control Signals (24)

Status Signals
(1)

Vertically Microcoded FSM w

Use memory array to encode control logic and
state transition logic

- called control state

- more flexible than random logic

Enable a more systematic approach to
implementing complex multi-cycle instructions

Microcoding can produce good performance

- if accessing the control store is much faster than
accessing main memory

Read-only control stores might be replaceable
- enable in-field updates

Read-write control stores can simplify
diagnostics and microcode patches

10

Estimating Cycle Tim

e

A .
To control unit

oe en c_sel
= c_en

g l << l >>

a2 DPC C
< T |)

8.

a 31
T iau . alu IQS
A func | 1au func alu rt

rf_wen —» rd
Y =
7, pc 7, iau_ alu_ rf rf_addr
Y Eus_en Y bus_en I bus_en bus_en _sel
L 2

alu func iau func wd_en A‘— f)i; en

+4: A+4 si: sext(IR[15:0]) : .

v A+B g DI PRD

: ts: IR[25:0] <<2

+7 A+7B sis: sext(IR[15:0]) << 2

cmp: A == memreq. memreq. | memresp.

jt: { A[3128], B[270] } addr v data data

11

W

Microarchitecture CPI Cycle Time

long
short
short

Single-Cycle Processor
FSM Processor
Pipelined Processor

12

PARCv1 Pipelined Processor

Technology Constraints

e Assume modern technology
where logic is cheap and fast
(e.g., fast integer ALU)

e Assume multi-ported register
files with a reasonable
number of ports are feasible

e Assume small amount of very
fast memory (caches) backed
by large, slower memory

W

] | 9

Control Unit

A A A 4

k Status

Control ‘

Datapath
M !

"N
>

IR regfile
"N

tiy

imem imem dmem dmem
req resp req resp
Memory
<1 cycle
combinational

13

High-Level Idea for Pipelined Processors

Fixed Time-Slot Laundry

3am

10pm 11pm 12am

7pm 8pm 9pm 10pm 11pm 12am lam 2am
Anne's I
Load O = Hﬂ
Ben's
Load O
Cathy's
Load
Dave's
Load
Pipelined Laundry Pipelined Laundry with Slow Dryers
7pm 8pm 9pm 10pm 7pm 8pm 9pm
Anne's Anne's
Load Load O % EE
Ben's Ben's '
Load Load O
Cathy's Cathy's
Load Load
Dave's Dave's
Load Load

14

High-Level Idea for Pipelined Processors W

SIL
« Key pipeline traits

- multiple transactions operate simultaneously using
different resources

- pipelining does not help the transaction latency
- pipelining does help the transaction throughput

- potential speed up is proportional to the number of
pipelined stages

- potential speed up is limited by the slowest pipeline
stage

- potential speed up is reduced by time to fill the
pipeline

15

High-Level Idea for Pipelined Processors T

S

W
o /
S/
U Fetch Decode Reg Read Write Fetch Decode Reg Wnte Fetch Decode Updat
. Inst Inst Arith VIem Reg Inst Inst Arith Reg Inst Inst
2 Read Update\ addu Read Update\]
bo Reg Reg
5
99
Fetch Decode Reg Read Write Fetch Decode Reg Write Fetch Decode Updat
2 Inst Inst Arith Mem Reg Inst Inst Anth Reg Inst Inst
EL) Read Update\ addu Read Upda
Reg Reg
Fetch Decode Reg Read Wnte
Inst Inst Arith VIem Reg
-c Read Updat
v Reg
=
"'_"‘ addu [Fetch }[Decode Wnte
3 Inst Inst An Reg
o a“ Read Update
P R

Fetch Decode Upda
Inst Inst

16

Pipelined Processor Datapath and Control Unit

e Incrementally develop an unpipelined datapath

o Keep data flowing from left to right

e Position control signal table early in the diagram

e Divide datapath/control into stages by inserting
pipeline registers

o Keep the pipeline stages roughly balanced

e Forward arrows should avoid “skipping” pipeline
registers

« Backward arrows will need careful consideration

L

W

17

Pipelined Processor Datapath and Control Unit w
o

Control Signal
Table 1 1 1 \; FJ
_br_targ
: ir
< arg
| ir{25:0)
| j_tgen of
! vaddr W
ir{15:0] f
—[br_tgen LX b _wen_W
) |

regfile

] e

i2016) | (read)
NSO sext
sel [
v l
imemreq. imemresp. dmemreq. dmemreq. dmemresp.
addr data data addr data

addiu r3, r4, 1 B~ F

addiu rl, r2, 1 &F%Dﬁa—u—M—ﬂ—'W
_£%.
I

addiu r5, r6, 1

Quiz: Adding a New Auto-Incrementing Load Instructlon

v

lw.ai rt,

imm(rs)

R[rt] < M| R[rs] + sext(imm) |; R[rs] < R|rs] + 4

o e
valFD Control Signal val_ DX Control val XM Control val MW Control
Table S“nyi | Logic s XM | | Logic s MW | | R
——————— D Stage -- --"""E"'i“ X Stage“-“"i‘"f‘ M Stage-——————:——-lw Stage
btarg DX
ir| 25:0] J o
_: j_tgen [
raddr_W
if[150] o
N | br_tgen { wen W
— '
ir_FD = regfile Foil
ir|20:16] (read) (write)
") —_
= .
: \ ir] 15:0] sext

imemreq. imemresp.

addr

data

v

dmemreq. dmemreq. dmemresp.

data

addr

data

W

19

Pipeline Hazards w

RAW data hazards

- an instruction depends on a data value produced by an
earlier instruction
Control hazards

- whether or not an instruction should be executed
depends on a control decision made by an earlier one

Structural hazards

- an instruction in the pipeline needs a resource being
used by another instruction in the pipeline

WAW and WAR name hazards

- an instruction in the pipeline is writing a register that
an earlier instruction in the pipeline is either writing or
reading

20

Proposed Solutions: Stalling and Squashing |nstructionsw
SIL

 Stalling

- an instruction originates a stall due to a hazard,
causing all instructions earlier in the pipeline to also
stall. When the hazard is resolved, the instruction no
longer needs to stall and the pipeline starts flowing
again.

e Squashing

- an instruction originates a squash due to a hazard, and

squashes all previous instructions in the pipeline (but

not itself). We restart the pipeline to begin executing a
new instruction sequence.

21

Control Logic with No Stalling and No Squashing

Stage A

Logic

Datapath —’D—‘

Stage B Stage C T
Control Control
Logic Logic [~
I R
Stage B Stage C
Datapath Datapath —
Logic Logic

W

always_ff @(posedge clk)
if (reset)

val_B <= 0
else
val_B <= next_val_A

next_val_B = val_B

22

Control Logic with Stalling and No Squashing W

control, ostall signals
& S|
i— next_
val_B
1 Yyy A 1 A 4
—
Stage A Stage C
Control Control
reg_en_B = !stall_B Logic Logic [~
always_ff @(posedge clkx) | | ~ jegenb | | -
if (reset) S X . é
- tage tage
val B <= 0 Datapath Datapath —
else if (reg_en_B) Logic Logic

val_B <= next_val_A

ostall_B val_B && (ostall_hazardl_B || ostall_hazard2_B)

stall_B val_B &% (ostall_B || ostall_C || ...)

next_val_B val_B && !stall_B

ostall_B Originating stall due to hazards detected in B stage.

stall_B Should we actually stall B stage? Factors in ostalls due to hazards
and ostalls from later pipeline stages.

next_val_B Only send transaction to next stage if transaction in B stage is valid
and we are not stalling B stage. 23

Control Logic with Stalling and Squashing

SIL.
control, ostall, osquash signals
§_ next_
| LA A 'val_B A A 4 Val_B ! A4
\ >
Stage A Stage B Stage C
reg_en B = !stall B Control Control Control
Logic Logic Logic [~
always_ff @(posedge clk)
if (reset) e] B
<= v v 4
ValTB 0 Stage A Stage B Stage C
else if (reg_en B) Datapath Datapath Datapath —
val_B <= next_val_A Logic Logic Logic
squash_ B = val_B && (osquash_C || ...)
ostall B = val_B && !squash_B &% (ostall_hazardl B || ostall_hazard2 B)
stall_B = val_B &% !squash_B && (ostall_B || ostall_ C || ...)
osquash_B = val_B && !squash_B && !stall_B && (osquash_hazardi B || .)
next_val_B = val_B && !stall_B && !squash_B

24

Control Logic with Stalling and Squashing W

SIL

squash_B

Should we squash B stage? Factors in the originating squashes
from later pipeline stages. An originating squash from B stage
means to squash all stages earlier than B, so osquash_B is not
factored into squash_B.

ostall_B

A squash takes priority, since a squashed transaction is invalid and
thus it should not originate a stall.

stall_B

A squash takes priority, since a squashed transaction is invalid and
thus it should not actually stall.

osquash_B

Originating squash due to hazards detected in B stage. A squash
takes priority, since a squashed transaction is invalid and thus it
should not originate a squash. A stall also takes priority, since a

stalling transactions should not originate a squash.

next_val_B

Only send transaction to next stage if transaction in B stage is valid
and we are not stalling or squashing B stage.

25

Questions?

Comments?

Discussion?

26

Acknowledgement

Cornell University, ECE 4750

27

