
Xuan ‘Silvia’ Zhang

Washington University in St. Louis

http://classes.engineering.wustl.edu/ese566/

Lecture 7

Overview of Design Flow

Application Specific Integrated Circuit (ASIC) Type

• Full-custom

– transistors are hand-drawn

– best performance (although almost extinct)

– still using to optimized standard cell

• Gate Array (for small volumes)

– use sea of gates (mask-programmable gate arrays)

– FPGA (reconfigurable)

• Standard Cell

– only use standard cell from the library

– dominate design style for ASIC (what we are going to

use)

2

Outline

Standard-Cell-Based Design

SoC-Platform-Based Design

Methodology Comparison

3

Standard-Cell-Based Design

4

Example Standard Cell

5

Standard-Cell-Based Flow CAD Algorithms

6

Front-End Flow

7

Back-End Flow

8

Older Standard-Cell ASICs

9

Modern Standard-Cell ASICs

10

Standard-Cell Libraries

11

Standard-Cell Libraries

12

Standard-Cell Library Characterization

13

Standard-Cell Electrical Characterization

• Characterization computes cell parameters

– e.g. delay, output current

– depend on input variables, i.e. output load, input

skew, etc.

• Characterization is performed under conditions

– combination of process, voltage, temperature (PVT)

14

ST Microelectronics: 3-Input NAND Gate

• C = load capacitance

• T = input rise/fall time

15

Standard-Cell Electrical Characterization (.lib)

16

Standard-Cell Electrical Characterization (.lib)

17

Standard-Cell Electrical Characterization (.lib)

18

Standard-Cell Physical Characterization

19

SAED 90nm Library: NAND Gate Data Sheet

20

Outline

Standard-Cell-Based Design

SoC-Platform-Based Design

Methodology Comparison

21

System-on-Chip (SoC) Platform-Based Design

• Integration

– standard cell block

– custom analog

– processor

– memory

• Standardized Bus

– AMBA, Sonics, …

• IP Business Model

– hard or soft IP from

3rd party provider

– e.g. ARM

22

SoC Hardware/Software Co-Design

23

SoC Hardware/Software Co-Design

24

SoC Platform-Based Design

• Platform allows restriction

on design space

– limit implementation choice

– provide well-defined

abstraction of the underlying

technology for app developer

• New platform

– at architecture and micro-

architecture boundary

• Representation of

communication

– key to the platform design

approach

25

Outline

Standard-Cell-Based Design

SoC-Platform-Based Design

Methodology Comparison

26

Operation Binding Time

• Earlier the operation is bound, the less area,

delay, and energy required for implementation

• Later the operation is bound, the more flexible

the device

27

Comparison of Specific Design Methodologies

28

ASIC vs. FPGA

• Traditional Argument

– ASIC: high NRE ($2M for 0.35um),

low marginal cost, best efficiency

– FPGA: low NRE, high marginal

cost, lower efficiency

– crossover point: ~10,000

• Current Trends

– ASIC: increasing NRE ($40M for

90nm) due to design, verification,

and mask costs, etc.

– FPGA: better able to track

Moore’s law integrating fixed

function blocks

– crossover point: ~100,000

29

Scale: ASIC with Pre-Placement & SRAMs

30

T0: Full Custom with Standard Cells

31

ASIC and Full Custom with Standard Cell

32

Xilinx Vertex-II Pro: FPGA with Hard Processor

33

Altera HardCopy: FPGA to Gate-Array-Like Tapeout

34

Multi-Chip System: BrainSoC and PEU in RoboBee

35

Design Principle in Automated Methodologies

• Modularity

– to enable mixing different custom and automated methods

• Hierarchy

– to efficiently handle automatically transforming large design

• Encapsulation

– significant higher emphasis on encapsulation in all domains

(behavioral, structural, physical) at all level of abstraction

(architecture, RTL, and gate-level)

• Regularity

– to create automated tools to generate structures like

datapaths and memories

• Extensibility

– automated methodologies enable more highly parameterized

and flexible implementation improving extensibility

36

Questions?

Comments?

Discussion?

37

Acknowledgement

Cornell University, ECE 5745

38

