

Lecture 7 Overview of Design Flow

Xuan 'Silvia' Zhang Washington University in St. Louis

http://classes.engineering.wustl.edu/ese566/

Application Specific Integrated Circuit (ASIC) Type

- Full-custom
 - transistors are hand-drawn
 - best performance (although almost extinct)
 - still using to optimized standard cell
- Gate Array (for small volumes)
 - use sea of gates (mask-programmable gate arrays)
 - FPGA (reconfigurable)
- Standard Cell
 - only use standard cell from the library
 - dominate design style for ASIC (what we are going to use)

Standard-Cell-Based Design

SoC-Platform-Based Design

Methodology Comparison

Standard-Cell-Based Design

Example Standard Cell

Standard-Cell-Based Flow CAD Algorithms

Front-End Flow

Back-End Flow

Older Standard-Cell ASICs

Limited metal layers require dedicated routing channels and feedthrough cells

Modern Standard-Cell ASICs

Increasing number of metal layers allow cells to be hidden under interconnect

Standard-Cell Libraries

Gate Type Variations		Options		
Inverter/Buffer/ Tristate Buffers		Wide range of power options, 1x, 2x, 4x, 8x, 16x, 32x, 64x minimum size inverter		
NAND/AND	2-8 inputs	High, normal, low power		
NOR/OR	2-8 inputs	High, normal, low power		
XOR/XNOR		High, normal, low power		
AOI/OAI	21, 22	High, normal, low power		
Multiplexers	Inverting/noninverting	High, normal, low power		
Adder/Half Adder		High, normal, low power		
Latches		High, normal, low power		
Flip-Flops	D, with and without synch/asynch set and reset, scan	High, normal, low power		
I/O Pads	Input, output, tristate, bidirectional, bound- ary scan, slew rate limited, crystal oscillator	Various drive levels (1–16 mA) and logic levels		

Standard-Cell Libraries

Standard-Cell Library Characterization

Standard-Cell Electrical Characterization

- Characterization computes cell parameters
 - e.g. delay, output current
 - depend on input variables, i.e. output load, input skew, etc.
- Characterization is performed under conditions
 - combination of process, voltage, temperature (PVT)

ST Microelectronics: 3-Input NAND Gate

- C = load capacitance
- T = input rise/fall time

Path	1.2V - 125°C	1.6V - 40°C
In $1-t_{pLH}$	0.073+7.98C+0.317T	0.020+2.73 <i>C</i> +0.253 <i>T</i>
$In1-t_{pHL}$	0.069+8.43 <i>C</i> +0.364 <i>T</i>	0.018+2.14 <i>C</i> +0.292 <i>T</i>
$In2-t_{pLH}$	0.101+7.97 <i>C</i> +0.318 <i>T</i>	0.026+2.38 <i>C</i> +0.255 <i>T</i>
$In2-t_{pHL}$	0.097+8.42 <i>C</i> +0.325 <i>T</i>	0.023+2.14 <i>C</i> +0.269 <i>T</i>
$In3-t_{pLH}$	0.120+8.00 <i>C</i> +0.318 <i>T</i>	0.031+2.37 <i>C</i> +0.258 <i>T</i>
In3—t _{pHL}	0.110+8.41C+0.280T	0.027+2.15 <i>C</i> +0.223 <i>T</i>


```
/* Characterization for a 3-input NAND gate */
cell ( NAND3X0 ) {
```

/* Overall characterization */
cell_footprint : "nand3x0";
area : 7.3728;
cell_leakage_power : 9.151417e+04;

```
/* Characterization for input pin IN1 */
pin ( IN1 ) {
    direction : "input";
```

/* Fixed input capacitance */
capacitance : 2.190745;

/* Transient capacitance values */
fall_capacitance : 2.212771;
rise_capacitance : 2.168719;

Standard-Cell Electrical Characterization (.lib)


```
cell ( NAND3X0 ) {
 pin ( IN1 ) {
     /* Short-circuit and internal switching
       power when IN2 and IN3 are zero */
     internal_power () {
      when : "!IN2&!IN3";
       /* 1D lookup tables to calculate power as
         function of input slew */
      rise_power ( "power_inputs_1" ) {
         index_1( " 0.0160000, 0.0320000, 0.0640000" );
        values( "-1.2575404, -1.2594251, -1.2887053");
       fall_power ( "power_inputs_1" ) {
        index_1( " 0.0160000, 0.0320000, 0.0640000" );
        values( " 1.9840914, 1.9791286, 2.0696119" );
```

Standard-Cell Electrical Characterization (.lib)


```
cell ( NAND3X0 ) {
   pin ( QN ) {
     direction : "output";
```

}

/* Boolean logic eq for QN as function of inputs */
function : "(IN3*IN2*IN1)'";

```
timing () {
  related_pin : "IN1";
  cell_rise ( "del_1_7_7" ) {
    index_1( "0.016, 0.032, 0.064" ); /* Input slew */
    index_2( "0.1, 3.75, 7.5" ); /* Load cap */
    /* Lookup table to calculate delay as non-linear
    function of input signal slew and load cap */
```

```
values( "0.0178632, 0.0275957, 0.0374970", \
    "0.0215562, 0.0316225, 0.0414275", \
    "0.0261721, 0.0387623, 0.0496870" )
```

Standard-Cell Physical Characterization

Layout View

Abstract Physical View

SAED 90nm Library: NAND Gate Data Sheet

Figure 10.6. Logic Symbol of NAND

Table 10.11. NAND Truth Table (n=2,3,4)

IN1	IN2		INn	QN
0	X		X	1
Х	0		X	1
				1
Х	X		0	1
1	1	1	1	0

	Operating Conditions: VDD=1.2 V DC, Temp=25 Deg.C, Operating Frequency: Freq=300 MHz, Capacitive Standard Load: CsI=13 fF				
Cell Name Cload		Prop Delay (Avg)	Pov Leakage (VDD=1.2 V DC, Temp=25 Dec.C)	wer Dynamic	Area
		ps nW		nW/MHz	(um²)
NAND2X0	0.5 x Csl	140	38	3583	5.5296
NAND2X1	1 x Csl	132	78	5208	5.5296
NAND2X2	2 x Csl	126	157	9191	9.2160
NAND2X4	4 x Csl	125	314	17902	14.7456
NAND3X0	0.5 x Csl	128	91	5331	7.3728
NAND3X1	1 x Csl	192	102	12200	11.9808
NAND3X2	2 x Csl	212	155	19526	12.9024
NAND3X4	4 x Csl	241	260	44937	15.6672
NAND4X0	0.5 x Csl	147	106	5357	8.2944
NAND4X1	1 x Csl	178	161	15214	12.9024

Standard-Cell-Based Design

SoC-Platform-Based Design

Methodology Comparison

22

System-on-Chip (SoC) Platform-Based Design

- Integration
 - standard cell block
 - custom analog
 - processor
 - memory
- Standardized Bus
 - AMBA, Sonics, ...
- IP Business Model
 - hard or soft IP from 3rd party provider
 - e.g. ARM

SoC Hardware/Software Co-Design

SoC Hardware/Software Co-Design

SoC Platform-Based Design

- Platform allows restriction on design space
 - limit implementation choice
 - provide well-defined abstraction of the underlying technology for app develope
- New platform
 - at architecture and microarchitecture boundary
- Representation of communication
 - key to the platform design approach

Standard-Cell-Based Design

SoC-Platform-Based Design

Methodology Comparison

Operation Binding Time

- Earlier the operation is bound, the less area, delay, and energy required for implementation
- Later the operation is bound, the more flexible the device

"Hardware"				"Software"		
Full	Standaro	d SoC	Gate	Prog.	Reprog.	µproc
Custom	Cell	Platform	Array	Logic	Logic	DSP
First	First	First	Metal	Fuse	Load	Load
Mask	Mask	Mask	Masks	Program	Config	Program

Later Binding Time

Comparison of Specific Design Methodologies

Design Method	NRE	Unit Cost	Power Disp	Impl Compl	Time to Market	Perf	Flex
Full Custom	VHigh	Low	Low	High	High	VHigh	Low
Standard Cell	High	Low	Low	High	High	High	Low
SoC Platform	High	Low	Low	Med	High	High	Med
Gate Array	Med	Med	Low	Med	Med	Med	Med
Prog Logic	Low	High	Med	Low	Low	Med	Med
Reprog Logic	Low	High	Med	Med	Low	High	High
µProc/DSP	Low	High	High	Low	Low	Low	VHigh

ASIC vs. FPGA

- Traditional Argument
 - ASIC: high NRE (\$2M for 0.35um), low marginal cost, best efficiency
 - FPGA: low NRE, high marginal cost, lower efficiency
 - crossover point: ~10,000
- Current Trends
 - ASIC: increasing NRE (\$40M for 90nm) due to design, verification, and mask costs, etc.
 - FPGA: better able to track Moore's law integrating fixed function blocks
 - crossover point: ~100,000

Scale: ASIC with Pre-Placement & SRAMs

T0: Full Custom with Standard Cells

ASIC and Full Custom with Standard Cell

Standard cell: predefined gates, automatically placed and routed. In .5u \rightarrow 10K fets/mm²

Full custom: custom "cells" meant to be stacked in columns to create N-bit wide datapath. Signals between columns routed across cells. In $.5u \rightarrow 25K/mm2$

RAM Generator: one cell iterated many times perhaps surrounded by driver/sensing logic. Basic structure stays the same, only dimensions change. In .5u \rightarrow 45K/mm² for multiport regfile

Xilinx Vertex-II Pro: FPGA with Hard Processor

/FPGA Fabric

Embedded memories

Hardwired multipliers

Altera HardCopy: FPGA to Gate-Array-Like Tapeout

Multi-Chip System: BrainSoC and PEU in RoboBee

Design Principle in Automated Methodologies

- Modularity
 - to enable mixing different custom and automated methods
- Hierarchy
 - to efficiently handle automatically transforming large design
- Encapsulation
 - significant higher emphasis on encapsulation in all domains (behavioral, structural, physical) at all level of abstraction (architecture, RTL, and gate-level)
- Regularity
 - to create automated tools to generate structures like datapaths and memories
- Extensibility
 - automated methodologies enable more highly parameterized and flexible implementation improving extensibility

Questions?

Comments?

Discussion?

Acknowledgement

Cornell University, ECE 5745