

Lecture 2 CMOS Circuits

Xuan 'Silvia' Zhang Washington University in St. Louis

http://classes.engineering.wustl.edu/ese566/

Quantitative CMOS Model

• Threshold Voltage

$$V_T = V_{T0} + \gamma \left(\sqrt{\left| -2\phi_F \right| + V_{SB}} - \sqrt{\left| -2\phi_F \right|} \right)$$
$$\phi_0 = \frac{kT}{q} \ln \frac{N_A N_D}{n_i^2}$$

• I-V Curve

ode
$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} (V_{gs} - V_{th}) V_{ds} - \frac{V_{ds}^2}{2}$$

n $I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} (V_{gs} - V_{th})^2 (1 + \lambda V_{ds})$

- saturation
- Parasitic Capacitance
 - gate cap

- junction cap
$$C_{j0} = \sqrt{\frac{\varepsilon_{si}q}{2} \left(\frac{N_A N_D}{N_A + N_D}\right) \frac{1}{\sqrt{\phi_0}}}$$

CMOS Capacitance

(3.45)

- Overlap (gate) Cap

 C_{gso}
- Polysilicon gate Source n^+ x_d x_d x_d w n^+ x_d x_d r^+ x_d x_d r^+ r^+

- Junction Cap
 - C_{diff}

 t_{ox} n^+ L n^+

(b) Cross section

(a) Top view

Figure 3.28 MOSFET overlap capacitance.

 $C_{GSO} = C_{GDO} = C_{ox} x_d W = C_o W$

$$\begin{split} C_{diff} &= C_{bottom} + C_{sw} = C_j \times AREA + C_{jsw} \times PERIMETER \\ &= C_j L_S W + C_{jsw} (2L_S + W) \end{split}$$

Outline

CMOS Inverter

Combinational Logic

Sequential Circuits

Memory

Inverter: Simple RC Model

Inverter Layout

 V_{in}

Assumptions:

1.

2.

Normalize transistor width to 3. minimum NMOS

Inverter Voltage Transfer Characteristics (VTC)

Figure 5.4 Load curves for NMOS and PMOS transistors of the static CMOS inverter (V_{DD}^{out} 2.5 V). The dots represent the dc operation points for various input voltages.

Figure 5.5 VTC of static CMOS inverter, derived from Figure 5.4 (V_{DD} = 2.5 V). For each operation region, the modes of the transistors are annotated — off, res(istive), or sat(urated).

Inverter Noise Margin

- Noise Margin
 - if range of output V_{OL} to V_{OH} is wider than the range of input values V_{IL} to V_{IH} , then the inverter exhibits noise immunity. (|Voltage Gain|>1)

Inverter Noise Margin

• NMH, NML Definition

 $NM_{\rm H} \equiv V_{\rm OH} - V_{\rm IH}$ $NM_{\rm L} \equiv V_{\rm IL} - V_{\rm OL}$

Inverter Dynamic Power

Capacitive Power

Inverter Static Power

Outline

CMOS Duality

CMOS Static Logic Style

- For every set of input logic values, either pull-up or pull-down network connects to VDD or GND
 - power rails would be shorted if both connected
 - output would float (tri-state logic), if neither connected

NAND/NOR Static Logic Gates

NAND Gate

NOR Gate

Design More Complex Gates

- Goal is to create a logic function f(x₁, x₂, ...)
 - can only implement inverting logic with one stage
- Implement pull-down network
 - write $PD = /f(x_1, x_2, ...)$
 - use parallel NMOS for OR of inputs
 - use series NMOS for AND of inputs
- Implement pull-up network
 - write PU = $f(x_1, x_2, ...) = g(/x_1, /x_2, ...)$
 - use parallel PMOS for OR of inverted inputs
 - use series PMOS for AND of inverted inputs

Complex Logic Gate Example

Multi-Stage Static Logic

CMOS Pass-Gate Logic Style

CMOS Transmission Gate Multiplexer

D1

D1

CMOS Tri-State Buffers

Various Multiplexer Implementations

- Delay, Area, Energy Trade-offs
 - simple first-order analysis

Larger Tri-State Multiplexers

Homework #2

- Posted on class website
- Due on 1/30 at 2:30pm
- Provide extension to the lecture

RC Delay

- Lumped Model
 - C only
 - RC model

Figure 4.11 Distributed versus lumped capacitance model of wire. $C_{lumped} = L \times c_{wire}$, with *L* the length of the wire and c_{wire} the capacitance per unit length. The driver is modeled as a voltage source and a source resistance R_{driver} .

Elmore Delay Formula

- Assumptions regarding the RC network
 - the network has a single input node
 - all the capacitors are between a node and the ground
 - the network does not contain any resistive loops (tree)
- Unique resistive path
 - path resistance $R_{44} = R_1 + R_3 + R_4$
 - shared path resistance $R_{ik} = \sum R_j \Rightarrow (R_j \in [path(s \rightarrow i) \cap path(s \rightarrow k)])$

Questions?

Comments?

Discussion?

Acknowledgement

N. Weste and D. Harris, "CMOS VLSI Design", 2011 Jan Rabaey, "Digital Integrated Circuits", 2006 Cornell University, ECE 5745 UC Berkeley, CS 230 MIT, 6.371