

Lecture 2 CMOS Devices

Xuan 'Silvia' Zhang Washington University in St. Louis

http://classes.engineering.wustl.edu/ese566/

Outline

Transistor Model

Wire Model

Delay Model

CMOS Fabrication

Fundamental Building Block: MOSFET

Metal-Oxide-Semiconductor Structure

Accumulation:

Voltage source puts negative charge on gate, attracts positively-charged majority carriers in p-type silicon body

Metal-Oxide-Semiconductor Structure

Depletion:

Voltage source puts positive charge on gate, pushes positively-charged carriers away from surface, uncovers some negatively-charged dopant atoms in substrate

Metal-Oxide-Semiconductor Structure

Polysilicon Gate Silicon Dioxide Insulator p-Type Silicon Body (doped to create mobile majority carriers, positively charged holes)

Inversion:

Voltage source puts more positive charge on gate, instead of pushing holes even further away, draws free electrons to surface. **NMOS Transistor**

 $\begin{array}{l} \textbf{Cutoff: } V_{gs} = 0V, \, Vds \, can \, be \, 0V \, or \, Vdd \\ No \, Channel, \, I_{ds} = 0 \end{array}$

Linear:
$$Vgs = Vdd$$
, $Vds = Vdd$
Channel Formed, I_{ds} increases with V_{ds}

Linear: $V_{gs} = Vdd$, $V_{ds} = 0V$ Channel Formed, I_{ds} increases with V_{ds}

Ids independent of Vds

Simple NMOS Circuit

Key Qualitative Characteristics of MOSFET

- V_t sets when transistor turns on, impacts leakage current
- $\blacktriangleright I_d \propto \mu \times (W/L)$
- $\blacktriangleright \ \mu_n > \mu_p \implies R_{N,eff} < R_{P,eff}$

$$\blacktriangleright C_g \propto (W \times L)$$

• $C_d \propto W$

 $\uparrow W = \downarrow R_{eff} = \uparrow I_d = \uparrow \\ C_d, C_g$

 $\blacktriangleright \uparrow L = \uparrow R_{eff} = \downarrow I_d = \uparrow C_g$

Quantitative CMOS Model

• Threshold Voltage

$$V_T = V_{T0} + \gamma \left(\sqrt{\left| -2\phi_F \right| + V_{SB}} - \sqrt{\left| -2\phi_F \right|} \right)$$
$$\phi_0 = \frac{kT}{q} \ln \frac{N_A N_D}{n_i^2}$$

• I-V Curve

fode
$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} (V_{gs} - V_{th}) V_{ds} - \frac{V_{ds}^2}{2}$$

n $I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} (V_{gs} - V_{th})^2 (1 + \lambda V_{ds})$

- saturation
- Parasitic Capacitance
 - gate cap

- junction cap
$$C_{j0} = \sqrt{\frac{\varepsilon_{si}q}{2} \left(\frac{N_A N_D}{N_A + N_D}\right) \frac{1}{\sqrt{\phi_0}}}$$

Outline

Transistor Model

Wire Model

Delay Model

CMOS Fabrication

Wire Resistance

- Thickness fixed in given manufacturing process
- Resistance quoted as ohm/square
- TSMC 180nm 6 Aluminum metal layers
 - M1-M5: 0.08 ohm/square (0.5um x 1mm wire = 160 ohm)
 - M6: 0.03 ohm/square (0.5um x 1mm wire = 60 ohm)

Wire Capacitance

- Capacitance depends on geometry of surrounding wires and relative permittivity, ϵ_r , of dielectric
 - Silicon dioxide, SiO₂, $\epsilon_r = 3.9$
 - Silicon flouride, SiOF, $\varepsilon_r = 3.1$
 - SiLK polymer, $\varepsilon_r = 2.6$

Outline

Transistor Model

Wire Model

Delay Model

CMOS Fabrication

Qualitative Characteristics of Wire Delay

Quantitative Delay Model

- RC Ladder
 - Elmore delay model

$$t_{pd} = \sum_{nodesi} R_{i-to-source} C_i$$

 $= R_1 C_1 + (R_1 + R_2) C_2 + \dots + (R_1 + R_2 + \dots + R_N) C_N$

Outline

Transistor Model

Wire Model

Delay Model

CMOS Fabrication

Mask Set for NMOS (circa 1986)

Masks #1: n+ diffusion #2: poly (gate) #3: diff contact #4: metal

Layers to do p-Fet not shown. Modern processes have 6 to 10 metal layers (or more) (in 1986: 2). Design Rules for Masks (circa 1986)

#2: poly (gate)

#**4: m**etal

19

Start with an Un-Doped Wafer

Wet Etch to Remove Unmasked Regions

HF acid etches through poly and oxide, but not hardened resist.

After etch and resist removal

Use Diffusion Mask to Implant N-Type

Metallization Completes Device

Grow a thick oxide on top of the wafer.

Mask and etch to make contact holes

Put a layer of metal on chip. Be sure to fill in the holes!

Final NMOS Transistor

Top-down view:

"The planar process"

Jean Hoerni, Fairchild Semiconductor 1958

Local Interconnect

IBM 6-Transistor SRAM Cell

Intel Metal Stacks: 90nm and 45nm

Intel Metal Layer Dimensions in 45nm

Layer	t (nm)	w (nm)	s (nm)	pitch (nm)
M9	7µm	17.5µm	13µm	30.5µm
M8	720	400	410	810
M7	504	280	280	560
M6	324	180	180	360
M5	252	140	140	280
M4	216	120	120	240
M3	144	80	80	160
M2	144	80	80	160
M1	144	80	80	160

IBM Metal Stack

IBM 11-layer Copper Metal Stack

IBM 6-layer Copper Metal Stack

Bulk vs Silicon-on-Insulator (SOI) Processing

- Eliminate parasitic cap between S/D and body
 - lower energy, higher performance
- Lower sub-Vth leakage, but Vth varies over time
- 10-15% increase in total manufacturing cost
 - due to substrate cost

Lithography

- Pattern resolution exceeds wavelength of light
 - 193nm from argon fluoride laser
- Sophisticated patterning tricks
 - immersion lithography
 - optical proximity correction (OPC)
 - double patterning

Processing Enhancements

High-K Dieletrics and Metal Gates – Replacing silicon dioxide gate dielectric with a high-K material allows increased vertical electric field without increasing gate leakage

- Strained Silicon Layer of silicon in which silicon atoms are stretched beyond their normal interatomic distance leading to better mobility
- Gate Engineering Multiple transistor designs with different threshold voltages to allow optimization of delay or power

FinFET Transistors

- Small footprint, good gate control
 - use the vertical dimension
 - Intel starts using FinFET in 20nm -

Gate

Questions?

Comments?

Discussion?

Acknowledgement

N. Weste and D. Harris, "CMOS VLSI Design", 2011 Cornell University, ECE 5745 UC Berkeley, CS 230 MIT, 6.371