W

L

Lecture 14
Fundamental Memory Concepts (Part 2)

Xuan ‘Silvia’ Zhang
Washington University in St. Louis

http://classes.engineering.wustl.edu/ese566/

Memory Structure and Technology

e Register Files

rbl

wbl

IDDDDDDDD e
i|f=]=l'sl's]'s]'s] u]=

Row Decoder

Memory Structure and Technology W

« SRAM (cache, on-chip)

N —— — — — L bit bit_b
0 [[[[[] -
CH O O CH O O o o word
AR c :
y [= == —
IR R
O O O O O O O O []
S === v
oo oo ooo

n-k
kK [Col
Dec

n

90nm [Thompson02] 130nm [Tyagi00]

Memory Structure and Technology
« DRAM

OH O O OO0 O O

1 1 1 1 1 1 1]

e EEaEE e wed.
S EEEEE

CHO{O{ O O {4
(H 04 O O O O O O

[

CH OH O OH OH OH OH O
(H O O 04 O O O O
OH OO0 O O O O

K [Col
Dec

2
o
=
§
]

-k
n

n

Memory Structure and Technology W

« DRAM

Array Core Array Block Bank & Chip Channel
LOs . NL ' B B e B s HP "'LH ~ | | -
— k& [N [N \e- %‘\
> e = e
< HOO[H0]H0 = 2
>EEEE ||, JEy il ‘ 10
Slpreese=es [A ’_B: 1O Strip | 7/ _/—E
é “I:]‘C]'C] l ID T U AAce ' % 2:
0|0 [HO]| (e e e Banki =
e | | FEEE | | DR
7/ wordline \\ ' B L) Rank

EER w STRAP

SHE

e WL STRAP BL

il VDD B ow
SRAM in On-Chip DRAM in

Dedicated Process DRAM Dedicated Process

Adapted from [Foss, "Implementing Application-Specific Memory." ISSCC'96]

Memory Structure and Technology W

e Disk
- magnetic hard drives require rotating platters resulting

in long random access times with have hardly improved
over several decades

e Flash

- solid-state drives using flash have 100x lower latencies,
but also lower density and higher cost

Memory Technology Trade-offs W
SIL

g%

Latches &

> ‘ :: Low Capacity
Registers |

P Low Latency
wl High Bandwidth

Register Files "a ;Iﬁf (more and wider ports)
i

SRAM ' I i‘

DRAM s
Ccen‘gt_1 High Capacity
| High Latency
bit .
Low Bandwidth

Flash & Disk

Latency Numbers: W
every programmers (architect) should know .

L1 cache reference 1 ns
Branch mispredict 3 ns
L2 cache reference 4 ns
Mutex lock/unlock 17 ns
Main memory reference 100 ns
Send 2KB over commodity network 250 ns
Compress 1KB with zip 2 us
Read 1MB sequentially from main memory 9 us
SSD random read 16 us
Read 1MB sequentially from SSD 156 us
Round trip in datacenter 500 us
Read 1MB sequentially from disk 2 ms
Disk random read 4 ms

Packet roundtrip from CA to Netherlands 150 ms

find updated at https://people.eecs.berkeley.edu/~rcs/research/interactive latency.html

Cache Memories in Computer Architecture W
SIL

Three key questions
- how much data is aggregated in a cache line
- how do we organize multiple lines in cache

- what data is replaced to make room for new data when
cache is full

Categorizing misses
Write policies
Multi-level cache

Processor Cache Main Memory Disk/Flash

Cache Accesses =~ Main Memory Access Disk Access
(10 or fewer cycles) (100s of cycles) (100,000s of cycles)

Typical Access Pattern
instruction vs data access, temporal vs spatial locality

Address }logp_iim .

Instruction
fetches

Stack
accesses

Data
accesses

subroutine

call

o o o]

o

o

o

subroutine

s—Jreturn

scalar accesses
R

(o]

Time

&

10

Understand Locality W

St

Examine each of the following assembly programs and rank each pro-
gram based on the level of temporal and spatial locality in both the in-
struction and data address stream on a scale from 0 to 5 with 0 being no
locality and 5 being very significant locality.

Inst Inst Data Data
Temp Spat Temp Spat

loop:

1w rl, 0(xr2)

1w r3, 0(r4)
addiu rb5, rl1, r3
SW r5, 0(r6)
addiu r2, r2, 4
addiu r4, r4, 4
addiu r6, r6, 4
addiu r7, r7, -1
bne r7, rO, loop

Q1: How Much Data is Stored in a Cache Line?

I ta [00]
30b 4 Vv Tag
L ’ | .
g hit 32b+
I ta [off [00]
V Tag
< lb “
S B S | | - [- 1

g
2.
-~
b
W
N
o
—\
~
[
o’
N\
~

2864 2o]

32b A

—

12

Q2: How to Organize Multiple Lines in the Cache?

Four-line direct-mapped cache with 4B cache lines

0x000
0x004
0x008
0x00c
0x010
0x014
0x018
0x01c
0x020
0x024

ta

idx

00

28b,/

2bf

W

V Tag Data

I i 4 Sets
f: 32b 4
hit

Example execution worksheet and table for direct-mapped cache

Dynamic Transaction

Stream

rd
rd
rd
rd
rd

0x000
0x004
0x010
0x000
0x004

0x000
0x004
0x008
0x00c
0x010

13

14 Set 0
15 Set 1
16 Set 2
17 Set 3

V Tag Data

13

Increase Cache Associativity

Four-line two-way set-associative cache with 4B cache lines

s e Tinlol s .
0x008 Wb ¥ by V Tag Data V Tag Data
0x00c 12 Sets
0x010 * * [y (4 L3
0x014 _/i\ -~
0x018 - -
$zoia 32bgs 32by
0x020
0x024 l L
Four-line fully-associative cache with 4B cache lines
I ta |00] < 4Ways
30b ¥ V Tag Data V Tag Data V Tag Data V Tag Data
d ol I e 1l Il e 1l I e |l | I
= = =\ =
xi% iy

14

Increase Cache Line Size

| tag |idx] off |00
o Way 0 "
W) Yy [. —
? [] L L] L]
;E':B]) N N N Y\Z‘
Way 1 \L. L L
! L] [] L J L]
’f:?l) " S 7 S 7 S 7 N Z
YB 32bf 32bf 32b 32bf
hit o
\ /

15

Q3: What Data to be Replaced When Cache is Full? w
SIL

No choice in a direct-mapped cache
Random

good average case performance, but difficult to implement

Least recently used (LRU)

replace cache line which has not been accessed recently
exploits temporal locality

LRU cache state must be updated on every access
two-way cache can use a single “last used bit”

pseudo-LRU uses binary tree to approximate LRU for higher
associativity

First-In First-Out (FIFO, Round Robin)

simpler implementation without exploiting temporal locality
potentially useful in large fully-associative caches

16

Categorize Misses: The Three C’s

o Compulsory

- first-reference to a block
o Capacity

- cache is too small to hold all of the data
e Conflict

- collisions in a specific set

17

Classify Misses as a Sequence of Three Questions w
SIL

e Q1: would this miss occur in a cache with infinite
capacity?
- if “yes”, then this is a compulsory miss
- if “no”, consider Q2
e Q2: would this miss occur in a fully-associate
cache with the desired capacity?
- if “yes”, then this is a capacity miss
- if “no”, then consider Q3

e Q3: would this miss occur in a cache with the
desired capacity and associativity?
- if “yes”, then this is a conflict miss
- if “no”, then this is not a miss—it is a hit!

18

Examples W]

Assume we have a direct-mapped cache with two 16B lines, each with four 4B
words for a total cache capacity of 32B. We will need four-bits for the offset, one
bit for the index, and the remaining bits for the tag.

S|

tag idx h/m type Set0 Set 1

rd 0x000

rd 0x020

rd 0x000

rd 0x020

Assume we have a direct-mapped cache with two 16B lines, each with four 4B
words for a total cache capacity of 32B. We will need four-bits for the offset, one
bit for the index, and the remaining bits for the tag.

tag idx h/m type Set0 Set 1

rd 0x000

rd 0x020

rd 0x030

rd 0x000

19

Write Policies

L

o Write-through with no write allocate

on write miss, write memory but do not bring line into
cache

on write hit, write both cache and memory

require more memory bandwidth, but simpler
implementation

o Write-back with write allocate

on write miss, bring cache line into cache then write
on write hit, only write cache, do not write memory
only update memory when a dirty cache line is evicted
more efficient, but more complicated to implement

W

20

Translation, Protection, and Virtualization W

e Translation
- mapping of virtual address to physical address

e Protection
- permission to access address in memory

 Virtualization
- transparent extension of memory space using disk

Most modern systems provide support for all three
functions with a single paged-based memory
management unit (MMU).

21

Analyze Memory Performance w

SIL

Time _ Mem Accesses 9 Avg Cycles = Time

Mem Access Sequence Sequence Mem Access Cycle

e mem access/sequence depends on program and
translation

e time/cycle depends on microarchitecture and
implementation

e also known as average memory access latency
(AMAL)

22

Analyze Memory Performance w

St

Avg Cycles Avg Cycles n (Num Misses Avg Extra Cycles)

— X
Mem Access Hit Num Accesses Miss

« average cycles/hit is called the hit latency; it
depends on microarchitecture

o number of misses/number of access is called the
miss rate; it depends on microarchitecture

e average extra cycles/miss is called the miss

penalty; it depends on microarchitecture, rest of
memory system

23

Analyze Memory Performance W

<) <)
Processor Hit MMU Cache Miss
Latency Penalty

Main
Memory

Extra Accesses

Microarchitecture Hit Latency for Translation
FSM Cache >1 1+
Pipelined Cache ~1 1+

Pipelined Cache + TLB ~1 ~0

Transactions and Steps, Now for Memory W

St

e Executing a memory access involves a sequence
of steps

check tag: check one or more tags in cache

select victim: select victim line from cache using
replacement policy

evict victim: evict victim line from cache and write
victim to memory

refill: refill requested line by reading line from memory
write mem: write requested word to memory
access data: read or write requested word in cache

25

Memory Microarchitecture Overview

|

Memory Management Unit

cachereq l

=

h

v cacheresp

Control Unit

Control |

B -

Status

Datapath

Tag \
« Array

«] Data
Array

[[

Main Memory u cycle
co

mbmatlonal

26

High-level Idea for FSM Cache w
-

read hit

read miss

Select
Victim

Write
Mem write hit

Check Access Check -\ e\ Check Select Refill Check
2 Tag Data Tag Chegk Victim !
m ri
Mem

® 1 read read read

hit miss hit

27

FSM Cache Datapath T

lcachereq_val I tag lidx[off | 00 |
27b b 2b
write ca?e-D tag idx \ tag tag idx \ tag idx off \
req. c &~
addr tar.';;_y:}tif ; = :
hit i T '
Ry [N\
55 5] 1 58
J 2 ag o' %
£% Array £% 2y ~
= :‘: o t ray [127:96]
32b 128b :
2 | repl TT1

cache +— unit Data

req. p ‘ Array [31:0]

data z4b zext 128b/ darray._en] [1]

darray_wen -
@ z4b_sel N 128b
. :f] MT: Check tag
memreq. memreq. memresp. MRD: Read data array, return cacheresp

addr data data RO: Send refill memreq, get memresp
R1: Write data array with refill cache line
MWD: Send write memreq, write data array

28

High-level Idea for Pipelined Cache W
read hit -

*(Access SI
read miss Data
| Select : (
"AT‘F;{'Q XT* «° > Reflll
/I -
Check Access Check Access Check Access Tag Select Refill Access Check Access
2 Tag Data Tag Data Tag Data Check Victim € Data Tag Data
m Write
[read write | (o) read read read
hit hit hit miss hit
Check Access
(Tag)-(Data)
"8 read [Check
hit Tag
E rite
. w
o .
3] hit
.E" Check Access
n‘ Tag Data
read Ta Select Access
Che%k)_(th)(i)—()
read read Check)_(Access)
miss hit _Tag Data

29

Pipeline Cache Datapath w
S T
M%ssﬁge MO Stage M1 Stage
@ cache tag idx[]- off \ idx \ off \

req. 3
addr g";-;‘
. T 2%
miss A Tag
—{ Array
@ sz LI 1111 &
T = word_en_sel E] [127:96] 32b
word
enable %L—P +
° 1—-{ i 2 repl | 12"] 128b D T cache
Z "
cache +— | unit| ~) Data B resp.
req. N ~— Array data
data z24b | |zext R T BTN
darray_ arrdy_en I
write darray_wen -
24b_sel iﬁ 128b% 128b// mux_sel
memreq. memreq. memresp.
addr data data

30

Questions?

Comments?

Discussion?

31

Acknowledgement

Cornell University, ECE 4750

32

