

ESE566A Modern System-on-Chip Design, Spring 2017

ECE 566A Modern System-on-Chip Design, Spring 2017
Lab 3: Cache Design
Due: Mar 24, 5:00 pm

1. Overview ... 1

2. Background knowledge .. 1

2.1 Cache mapping techniques ... 1

2.2 Cache write ... 2

3. Cache description for the lab ... 3

4. How to get started .. 5

5. Tasks ... 7

5.1 Direct-map Cache design .. 7

5.2 Two-way associative Cache design .. 7

5.3 Compare the performance of different Caches ... 7

6. Submission ... 8

7. Acknowledgement ... 8

ESE566A Modern System-on-Chip Design, Spring 2017

1

1. Overview

In Lab3, you need to read source code of the baseline cache design and then your need
to design your own direct-mapped and two-way associative cache using Verilog HDL
based on these open source codes. After that, you will go through the ASIC design flow
you did in Lab1 on these cache controllers you designed. So, in this lab, you need to
know how to use ASIC design flow tools including Synopsys VCS, Design Compiler,
and Cadence Encounter by following the tutorials that posted on our course website. In
addition, you will compare the performance of different caches in your report.

2. Background knowledge

2.1 Cache mapping techniques

Cache mapping is the method by which the contents of main memory are brought into
the cache and referenced by the CPU. The mapping method used directly affects the
performance of the entire computer system.

1) Direct mapping

Main memory locations can only be copied into one location in the cache. This is
accomplished by dividing main memory into pages that correspond in size with the
cache. (Fig. 2.1)

Figure 2.1 Example of direct mapping used in cache memory

2) Fully associative mapping

Fully associative cache mapping is the most complex, but it is most flexible with regards
to where data can reside. A newly read block of main memory can be placed anywhere
in a fully associative cache. If the cache is full, a replacement algorithm is used to
determine which block in the cache gets replaced by the new data. (Fig. 2.2)

ESE566A Modern System-on-Chip Design, Spring 2017

2

Figure 2.2 Example of fully associated mapping used in cache memory

3)Set associative mapping

Set associative cache mapping combines the best of direct and associative cache
mapping techniques. As with a direct mapped cache, blocks of main memory data will
still map into as specific set, but they can now be in any N-cache block frames within
each set. (Fig. 2.3)

Figure 2.3 Example of set association mapping used in cache memory

2.2 Cache write

Since the cache contents area duplicate copy of information in main memory, writing
(instructions to enter data) to the cache must eventually be made to the same data in
main memory. This is done in two ways as follows:

1) Write-through cache

Writing is made to the corresponding data in both cache and main memory.

ESE566A Modern System-on-Chip Design, Spring 2017

3

2) Write-back cache

Main memory is not updated until the cache page is returned to main memory. A write-
back cache is more complex to implement, since it needs to track which of its locations
have been written over, and mark them as dirty for later writing to the backing store. The
data in these locations are written back to the backing store only when they are evicted
from the cache.

No data is returned on write operations, thus there are two approaches for situations of
write-misses:

• Write allocate (also called fetch on write): data at the missed-write location is loaded
to cache, followed by a write-hit operation. In this approach, write misses are similar
to read misses.

• No-write allocate (also called write-no-allocate or write around): data at the missed-
write location is not loaded to cache, and is written directly to the backing store. In
this approach, only the reads are being cached.

3. Cache description for the lab

We have provided you with a functional-level model of a cache, which essentially just
passes all cache requests through to the memory interface, and passes all memory
responses through to the cache response interface. While this might not seem useful,
the functional-level model will enable us to develop many of our test cases with the test
memory before attempting to use these tests with the baseline and alternative designs.

Based on the baseline design, you need to design both a direct-mapped, write-back
cache and a two-way associative, write-back cache with a total capacity of 256 bytes --
16 cache lines, and 16 bytes per cache line.

The datapath for the alternative direct-mapped design is shown in Fig. 3.1. The blue

signals represent the control/status signals for communicating between the datapath

and the control unit. The mkaddr block simply concatenates the tag and index plus

some zeros like this: { tag, 4’b0000 }.

ESE566A Modern System-on-Chip Design, Spring 2017

4

addr_rd

addr_wr

rd

wr

Tag

Array

(16x24b)

data_rd

data_wr

addr_rd

addr_wr

rd

wr

Tag

Array

(16x24b)

data_rd

data_wr

addr_rd

addr_wr

rd

wr

Data

Array

(16x128b)

data_rd

data_wr

addr_rd

addr_wr

rd

wr

Data

Array

(16x128b)

data_rd

data_wr

in
Valid Flag

Array

(16x1b)

out

offset

in
Valid Flag

Array

(16x1b)

out

offset

wr
Dirty Flag

Array

(16x1b)

out

offset

wr
Dirty Flag

Array

(16x1b)

out

offset
a

d
d

r_
re

q
w

r
rd

d
a

ta
_

w
r

a
d

d
r_

re
q

w
r

rd
d

a
ta

_
w

r
d

a
ta

_
rd

_
m

e
m

d
a

ta
_

rd
_

m
e

m

rd_mem

C
a

c
h

e
 w

r
e

n

C
a

c
h

e
 r

d
 e

n

Tag rd en

Tag wr en

Cache wr en

Memory

read finish

Memory

ReqestMemory

Response

Cache

ResponseCache

Request

Memory

read finish

Cache rd en

Cache wr en
4x32b

addr[3:2]

CMP

C
o

m
b

in
e

Cache_miss or hit

a
d

d
r[

3
1

:8
]

a
d

d
r[

3
1

:8
]

a
d

d
r[

7
:4

]

a
d

d
r[

7
:4

]
MK

Addr

MK

Addr

Mem addr sel

(mem rd or wr or not)

Mem rd en

Mem wr en

127:96

95:64

63:32

31:0

Write data sel

Memory

read finish

m
is

s
_

h
it
_

c
o

u
n

t
d

a
ta

_
rd

m
is

s
_

h
it
_

c
o

u
n

t
d

a
ta

_
rd

a
d

d
r_

re
s
q

Cache_miss or hit

statistics

a
d

d
r_

m
e

m
w

r_
m

e
m

rd
_

m
e

m
d

a
ta

_
w

r_
m

e
m

a
d

d
r_

m
e

m
w

r_
m

e
m

rd
_

m
e

m
d

a
ta

_
w

r_
m

e
m

Figure 3.1 Direct-Mapped Cache datapath

The direct-mapped design is direct mapped with 16-byte cache lines and a total

capacity of 256 bytes (i.e., 16 cache lines). So, we need four bits for the byte offset and

four bits for the index leaving 24 bits for the tag.

The FSM for the direct-mapped design is shown in Fig. 3.2. The control unit should

include valid and dirty bits to track the state of each tag entry. And Fig. 3.3 shows the

address format when access.

Reset

Tag

Check

Tag

Check

Evict

Process

Evict

Process

IDLEIDLE Refill

Process

Refill

Process

Data

Read or

Write

Data

Read or

Write

Read or write

Request

(!valid) ||

((!dirty) && miss)

valid &&

dirty && miss

valid && hit
Read or Write

Figure 3.2 Direct-Mapped cache FSM control unit

(It also could be used in Two-way Associative cache)

ESE566A Modern System-on-Chip Design, Spring 2017

5

Figure 3.3 Address formats when access the cache

CacheHost Evaluator Test Memory

Cache wr req

Cache rd req

Cache busy

Cache wr data

Cache rd data

Cache data ready

Cache addr_req

Memory wr req

Memory rd req

Memory busy

Memory wr data

Memory rd data

Memory addr

Cache Monitor

Hit

Statistics

Miss

Statistics
...

Cache_addr_resp

Figure 3.4 Example block-level diagram used in cache design

Fig. 3.4 shows a block-level diagram illustrating how the direct-mapped, baseline, and
alternative designs are integrated with a host evaluator, cache, and test memory for
testing and evaluation. We will load data into the test memory before resetting the
cache. Once we start the execution, the host evaluator will send read or write requests
into the cache, and eventually the cache will send memory responses to the host
evaluator. If the cache needs to access main memory, then the cache will send memory
requests to the test memory, and eventually the test memory will send memory
responses back to the cache.

Note that while the memory request or response format is quite flexible, our cache

designs will only support 4-byte cache requests and 16-byte memory requests. The

data field can contain an arbitrary value in a write memory request, however the data

field must contain all zeros in a write memory response. This simplifies creating

reference responses when testing.

You can find the Verilog version code of baseline cache in the folder Baseline on our
classroom Github of Lab3_src. Detailed explanation of the folder content is in section 4.

Based on the baseline design, you will need to design your own verilog code of direct-
mapped and two-way associative cache for this lab. And you can find the template code
in the folder DirectMap and TwoWayAssociative on our classroom Github of Lab3_src.
Detailed explanation of the folder content is in section 4.

4. How to get started

You are expected to accept the lab assignment in the link by click the button “Accept
this assignment”.

ESE566A Modern System-on-Chip Design, Spring 2017

6

https://classroom.github.com/assignment-
invitations/fd9053e0018022b5a51083520633cd4c

If you are the first time to use github, you should generate your own public key and add
it to your github account, or you will have permission denied when you git clone the
repository form our github classroom. When you add the ssh public key, you can follow
the link below:

https://help.github.com/articles/connecting-to-github-with-ssh/

And then create a folder in your own linux server account and git clone your lab
assignment repository. There are the command lines you may refer below:

% mkdir name_folder

% cd name_folder

% git clone git@github.com:wustl-ese566/lab3-your_user_name.git

% cd lab3-your_user_name/ (i.e., cd lab3-YunfeiGu/)

This repository lab3-your_user_name/ contains two folders:

• Baseline: a folder contains the source code of baseline Cache;

• DirectMap: a folder contains the source code of direct-mapped Cache;

• TwoWayAssociative: a folder contains the source code of two way associative

Cache;

There are five files in each folder:

• CacheController.v: Cache controller implementation code;

• CacheController_tb.v: Test bench to test the correctness of the cache controller;

• CacheController_tb1.v: Test bench to test the miss rate of the cache;

• ram.bin: Memory initial data;

• Makefile: Automated compile support file.

For each CacheController.v, the inputs and outputs are:

• rst: Reset;

• clk: Clock input;

• wr, rd: Cache operation request signals;

• data_rd: Data returned from cache (Cache to host);

• data_wr: Data written to cache (Host to cache);

• addr_req: Cache request address (Host to cache);

• addr_resp: The data address of cache response (Cache to host, cache controller

keeps the address of cache request in a buffer when cache miss happens);

• rdy: Cache ready;

• busy: Cache busy;

• wr_mem, rd_mem: Memory operation request signals;

• busy_mem: Memory busy;

• data_rd_mem: Data returned from memory (Memory to cache);

• data_wr_mem: Data written to memory (Cache to memory);

• addr_mem: Memory access address (Cache to memory);

https://classroom.github.com/assignment-invitations/fd9053e0018022b5a51083520633cd4c
https://classroom.github.com/assignment-invitations/fd9053e0018022b5a51083520633cd4c
https://help.github.com/articles/connecting-to-github-with-ssh/

ESE566A Modern System-on-Chip Design, Spring 2017

7

• cache_miss_count: Cache miss statistics;

• cache_hit_count: Cache hit statistics;

The direction of each signal is defined in the provided Verilog code.

(Note: In the lab we mainly focus on the cache controller, so we assume busy_mem is

always de-asserted).

Please be sure to source the class setup script using the following command before

compiling your source code: module add ese461.

5. Tasks

5.1 Direct-mapped Cache design

You should implement a direct-mapped cache with the same interface used in the
baseline design (Code template is in the folder DirectMap on github).

The size of cache is 16 lines with 16 bytes for each line. So, the total cache size is
16x16 bytes. Please implement the cache_miss_count and cache_hit_count and
present them into your reports. They will be used to evaluate the performance of your
cache. Also, please show the content of the cache in your report to show that your
cache work properly.

5.2 Two-way associative Cache design

You should implement a two way associative cache with the same interface used in the
baseline design (Code template is in the folder TwoWayAssociative on github).

The size of cache is 16 lines with 16 bytes for each line. So, the total cache size is
16x16 bytes. Please implement the cache_miss_count and cache_hit_count and
present them into your reports. They will be used to evaluate the performance of your
cache. Also, please show the content of the cache in your report to show that your
cache work properly.

5.3 Compare the performance of different Caches

In this section,you will compare the performance of direct-mapped and two-way
associative Cache. And you need to go through all the steps you did in lab1:

• Use Synopsys VCS to compile the Verilog source code of different cache
controllers;

• Use Design Compiler to do the synthesis of different cache controllers;

• Use Cadence Encounter to do the place and route of different cache controllers.

Then in your report, compare the power, area, timing and other facts that you think are
important of these different Cache and briefly explain the result. It is better to visualize
your experimental results(tables and/or plots).

ESE566A Modern System-on-Chip Design, Spring 2017

8

6. Submission

Please submit your lab assignment on Github. You are expected to submit your report,

TwoWayAssociative/CacheController.v file, and lab3_dc.tcl file for each Cache. If you

modify the test benches or create new ones, submit them too.

To submit your job, execute the following command:

(Note: the first two commands just need to be done once for the entire semester.)

% git config --global user.name “your_user_name”

% git config --global user.email “your_email_for_github”

% cd directory_of_your_lab_assignment/lab3-your_user_name/

% git add DirecMap/CacheController.v

% git add TwoWayAssociative/CacheController.v

% git add DirectMap/lab3_dc.tcl

% git add TwoWayAssociative/lab3_dc.tcl

% git add Lab3-report.pdf

% git add DirectMap/CacheController_tb.v.v (optional)

% git add DirectMap/CacheController_tb1.v (optional)

% git add TwoWayAssociative/CacheController_tb.v (optional)

% git add TwoWayAssociative/CacheController_tb1.v (optional)

% git commit -m “your commits”

% git push -u origin master

You also should submit anything else you think may help us understand your code and

result.

Please do not submit files like compiling result(simv) or simulation data(.vpd).

7. Acknowledgement
[1] http://www.csl.cornell.edu/courses/ece4750/handouts/ece4750-lab3-mem.pdf

http://www.csl.cornell.edu/courses/ece4750/handouts/ece4750-lab3-mem.pdf

	1. Overview
	2. Background knowledge
	2.1 Cache mapping techniques
	2.2 Cache write

	3. Cache description for the lab
	4. How to get started
	5. Tasks
	5.1 Direct-mapped Cache design
	5.2 Two-way associative Cache design
	5.3 Compare the performance of different Caches

	6. Submission
	7. Acknowledgement

