
ESE566A Modern System-on-Chip Design, Spring 2017

ECE 566A Modern System-on-Chip Design, Spring 2017
Lab 1: Go through ASIC design flow

1. Overview ..1

2. Introduction ..1

2.1 What is ASIC design flow?...1

2.2 What is RISC-V v-sclae core?...2

2.3 What is AHB-Lite? ...3

3. How to get started ...7

4. Required tasks ...7

5. Submission ...8

6. Acknowledgement ..8

ESE566A Modern System-on-Chip Design, Spring 2017

1

1. Overview
Lab1 is a tool practice lab in which you will do several works to be familiar with ASIC
design flow. In this lab, you need to know how to use ASIC design flow tools including
Synopsys VCS, Design Compiler, and Cadence Encounter by following the tutorials that
posted on our course website. And you should use these tools to go through ASIC design
flow on an open source core named RISC-V v-scale core.

2. Introduction
2.1 What is ASIC design flow?

In ASIC system design phase, the entire chip functionality is broken down to small pieces
with clear understanding about the block implementation. For example: for an encryption
block, do you use a CPU or a state machine. Some other large blocks need to be divided
into subsystems and the relationship between the various blocks has to be defined. In
this phase the working environment is documentation.

1) Register Transfer Level (RTL)

For digital ASICs or for digital blocks within a mixed-signal chip, this phase is basically
the detailed logic implementation of the entire ASIC. This is where the detailed system
specifications is converted into VHDL or Verilog language. In addition to the digital
implementation, a functional verification is performed to ensure the RTL design is done
according to the specifications.
When all the blocks are implemented and verified the RTL is then converted into a gate
level netlist.

2) Synthesis

In this phase the hardware description (RTL) is converted to a gate level netlist. This
process is performed by a synthesis tool that takes a standard cell library, constraints and
the RTL code and produces a gate-level netlist.

Synthesis tools are running different implementations to provide best gate level netlist
that meets the constraints. It takes into account power, speed, size and therefore the
results can vary much from each other. To verify whether the synthesis tool has correctly
generated the gate-level netlist a verification should be done.

3) Layout

ESE566A Modern System-on-Chip Design, Spring 2017

2

In this stage, the gate level netlist is converted to a complete physical geometric
representation. The first step is floorplanning which is a process of placing the various
blocks and the I/O pads across the chip area based on the design constraints. Then
placement of physical elements within each block and integration of analog blocks or
external IP cores is performed. When all the elements are placed, a global and detailed
routing is running to connect all the elements together. Also after this phase a complete
simulation is required to ensure the layout phase is properly done.
The file produced at the output of the layout is the GDSII (GDS2) file which is the file used
by the foundry to fabricate the silicon. The layout should be done according the silicon
foundry design rules.

2.2 What is RISC-V v-sclae core?

RISC-V is a new instruction set architecture (ISA) that was originally designed to support
computer architecture research and education and is now set to become a standard open
architecture for industry implementations under the governance of the RISC-V
Foundation. The RISC-V ISA was originally developed in the Computer Science
Division of the EECS Department at the University of California, Berkeley.

And V-scale, an implementation of an RV32IM core. This core implements a simple, Z-
scale-class pipeline, and is designed for integration with either existing microcontroller-
class bus interconnects. Fig.1 shows the z-scale pipeline diagram. Z-scale pipeline is 32-
bit 3-stage single-issue in-order pipe. It Executes RV32IM ISA, has M/U privilege modes
I-bus and D-bus are AHB-Lite and 32-bits wide. Also, Fig.2 show the Z-scale system block
diagram.

Fig.1 Z-scale pipeline

http://www.cs.berkeley.edu/
http://www.cs.berkeley.edu/
http://berkeley.edu/

ESE566A Modern System-on-Chip Design, Spring 2017

3

Fig.2 Z-scale system

If you want more information of section 2.2 you can read the material in
 https://riscv.org/wp-content/uploads/2015/06/riscv-zscale-workshop-june2015.pdf

2.3 What is AHB-Lite?

In the Section 2.2 Fig.2, we can see that AHB-Lite Crossbar plays an important role when
Z-scale core interconnects with external device. However, what is AHB-Lite protocol?

The main components of AHB-Lite system contain Master, Slaves, Address Decoder and
Multiplexor. In RISC-V z-scale architecture, what we should concern about is Master and
Slaves and the timing diagram of communication transitions. Fig.3 shows the AHB-Lite
master and slave interfaces.

https://riscv.org/wp-content/uploads/2015/06/riscv-zscale-workshop-june2015.pdf

ESE566A Modern System-on-Chip Design, Spring 2017

4

Fig.3 AHB-Lite master and slave interfaces

Here are the definitions of the interfaces shown in the Fig.3

• Global signals
– HCLK: the bus clock source (rising-edge triggered)
– HRESETn: the bus (and system) reset signal (active low)

• Master out/slave in
– HADDR[31:0]: the 32-bit system address bus
– HWDATA[31:0]: the system write data bus
– Control

• HWRITE: indicates transfer direction (Write=1, Read=0)
• HSIZE[2:0]: indicates size of transfer (byte, halfword, or word)
• HBURST[2:0]: burst transfer size/order (1, 4, 8, 16 beats or

undefined)
• HPROT[3:0]: provides protection information (e.g. I or D; user or

handler)
• HTRANS: indicates current transfer type (e.g. idle, busy, nonseq,

seq)
• HMASTLOCK: indicates a locked (atomic) transfer sequence

ESE566A Modern System-on-Chip Design, Spring 2017

5

• Slave out/master in
– HRDATA[31:0]: the slave read data bus
– HREADY: indicates previous transfer is complete
– HRESP: the transfer response (OKAY=0, ERROR=1)

Here we give a detailed AHB-Lite implementation example. Fig.4 shows a simple AHB-
Lite but connecting a processor (bus master) TO RAM, ROM and two peripherals
(slaves). The master provides a asynchronous clock (HCLK) to all of the slaves and can
reset the slaves by asserting HRESETn low. The master sends and address. The address
decoder uses the most significant bits to generate the HSEL signal selecting which slave
to access, and the slaves use the least significant bits to define the memory location or
register. The master sends HWDATA for writes. Each slaves reads onto its own HRDATA,
and a multiplexer chooses the data from the selected slave.

Fig.4 AHB-Lite transfer bus

The master sends a 32-bit address on one cycle and writes or reads data on the
subsequent cycle. The write or read is called a “transfer”. For writes (see in Fig.5a), the
master raises HWRITE and sends the 32-bit HWDATA to write. For reads (see in Fig.5b),
the master lowers HWRITE and the slave responds with 32-bit HRDATA. Transfers can
overlap so that the master can send the address of the next transfer while reading or
writing data for the current transfer. Fig.5c illustrates the timing of the bus for a write
followed immediately by a read. Observe how the data lags one cycle behind the address
and how the two transfers partially overlap.

ESE566A Modern System-on-Chip Design, Spring 2017

6

Fig.5a Basic Transfer - Write

Fig.5b Basic Transfer- Read

Fig.5c AHB-Lite transfer timing

If you want more information of section 2.3 you can read the material in
http://mazsola.iit.uni-miskolc.hu/~drdani/docs_arm/IHI0033A_AMBA3_AHB_Lite.pdf

http://mazsola.iit.uni-miskolc.hu/~drdani/docs_arm/IHI0033A_AMBA3_AHB_Lite.pdf

ESE566A Modern System-on-Chip Design, Spring 2017

7

3. How to get started
You are expected to accept the lab assignment in the link by click the button “Accept this
assignment”.

https://classroom.github.com/assignment-
invitations/2e1a214d45c4490bc17a1620c103639b

If you are the first time to use github, you should generate your own public key and add it
to your github account, or you will have permission denied when you git clone the
repository form our github classroom. When you add the ssh public key, you can follow
the link below:

https://help.github.com/articles/connecting-to-github-with-ssh/

And then create a folder in your own linux server account and git clone your lab
assignment repository. There are the command lines you may refer below:

 % mkdir name_folder (i.e., mkdir lab1)
 % cd name_folder
 % git clone git@github.com:wustl-ese566/lab1-your_user_name.git (i.e., git clone
git@github.com:wustl-ese566/lab1-YunfeiGu.git)
 % cd lab1-your_user_name/ (i.e., cd lab1-YunfeiGu/)

This repository lab1-your_user_name/vscale contains the following files for you to build
the project.

 src/Main/Verilog: a folder contains the open source code for RSIC-V cores
 src/Main/Verilog/lab1_dc.tcl: this is the tcl script you should change and submit.
 src/Test: a folder contains SRAM source code, testbench and input files.
 Makefile: a file that integrated instructions to compile and test v-scale core.
 .gitignore: determine which files and directories to ignore, before you make a

commit.
 License: a statement that indicates this repo is truly open source.
 README.md: a file that records the instruction how to use this open source core.

Please be sure to source the class setup script using the following command before
compiling your source code: module add ese461.

4. Required tasks
 Use Synopsys VCS to compile the Verilog source code in src/main/verilog

directory by following the tutorials. Here, you can use your individual command to
compile it or use the Makefile to run make run-asm-tests. In this process you will
know how to compile the Verilog code using Synopsys VCS and how to load

https://classroom.github.com/assignment-invitations/2e1a214d45c4490bc17a1620c103639b
https://classroom.github.com/assignment-invitations/2e1a214d45c4490bc17a1620c103639b
https://help.github.com/articles/connecting-to-github-with-ssh/

ESE566A Modern System-on-Chip Design, Spring 2017

8

memory to test the ISA on core. In this lab, you should get a folder named output.
In this folder, there are several .vpd files. Actually, these files are the VCS
simulation data results, you can use dve tool to look at the waveform of the
simulation and to verify the logic.

 Use Design Compiler to do the synthesis of the RISC-V v-scale core by following
the tutorials. The first thing you have to figured out is that which module is the top
module and which are child modules. And then revise the tcl script we provided to
synthesize the RISC-V v-scale source code. In this part, you should know how to
write lab1_dc.tcl file to define your own constrains and then do the synthesis. When
you finish the synthesis, you should get the timing, power, and area report for
RISC-V v-scale core. Try to revise the constrains of lab1_dc.tcl file and have a
better understanding of each parameter of these constrains, especially how will
these parameters influence the timing, power and area results. In the end of this
part, you should form a report contains the screenshots of all results when you do
the synthesis.

 Use Cadence Encounter following the tutorials to do the place and route for RISC-
V v-scale core by following the tutorials. In this part, try to use different parameters
to layout (i.e., use different pin distributed form) and have a better understanding
of these parameters and how will they influence the timing, power, area report. In
the end of this part, you should take the screenshots of all results (i.e., physical
layout and timing report) into the report.

 Write the report contains all contents required in above tasks. And copy your report
in the directory /lab1-your_user_name/

5. Submission
Please submit your lab assignment on Github. You are expected to submit your report
and lab1_dc.tcl file that contains the following contents:

There are the reference command lines to submit lab assignment below:

% cd directory_of_your_lab_assignment/lab1-your_user_name/vscale/src/Main/
Verilog/
% git config --global user.name “your_user_name”
% git config --global user.email “your_email_for_github”
% git add lab1_dc.tcl
% git commit –m “your commits”
% cd directory_of_your_lab_assignment/lab1-your_user_name/
% git add lab1_report-your_name-your_student_ID.pdf
% git commit –m “your commits”
% git push origin master

You also should submit anything else you think may help us understand your code and

ESE566A Modern System-on-Chip Design, Spring 2017

9

result.

Please do not summit files like compiling result(simv) or simulation data(.vpd).

6. Acknowledgement

https://riscv.org/
https://inst.eecs.berkeley.edu/~cs250/fa11/handouts/lab2-riscv-v2-vcs-dc.pdf
https://www.youtube.com/watch?v=iOh_TccRgm4
https://help.github.com/

https://riscv.org/
https://inst.eecs.berkeley.edu/~cs250/fa11/handouts/lab2-riscv-v2-vcs-dc.pdf
https://www.youtube.com/watch?v=iOh_TccRgm4

