
Application Note AC229
ProASICPLUS® Design Optimization

Introduction
This application note discusses various procedures for area and speed optimization during ProASICPLUS

design. Techniques for achieving high design performance are important when designing for FPGAs.
Similarly, area optimization is required for some designs. Optimizing for area often means larger delays,
and you must weigh your performance needs against your area needs to determine what works best for
your area design.

Various optimization and timing closure techniques exist, but the effects of these techniques vary from
design to design. Applying a single technique does not always improve design results. You can use
optimization techniques or adjust the default settings in various tools during design flow, or use both
approaches to achieve the best results for your design.

This application note assumes that you have knowledge of Actel Libero® Integrated Design Environment
(IDE) design flow. Actel Libero IDE offers synthesis, physical synthesis, and other third party tools. Libero
IDE also includes the Designer place-and-route tool. Designer allows detailed timing analysis of your
design, including a fully integrated Timing Closure and floorplanning tool. With these tools, you can easily
determine and locate critical paths in the targeted device floorplan. Once the critical paths are analyzed,
you can use various techniques to optimize their design.

This application note will cover various techniques for design optimization, starting with design
architecture and HDL coding. It will also provide optimization techniques using various tools during
design flow and explore these techniques to determine which provide the best results for your design.
Finally, this application note will cover the overall design flow and give a few design tips and
recommendations.

Overview of ProASICPLUS Architecture
You must understand the ProASICPLUS architecture in order to evaluate the performance of your
ProASICPLUS design and determine the best optimization techniques. The ProASICPLUS device core consists
of a Sea-of-Tiles. Each tile can be configured as a three-input logic function (e.g., NAND gate, D-flip-flop,
etc.) by programming the appropriate Flash switch interconnections. The logic tile cell has three inputs
(any or all of which can be inverted) and one output. Any three-input, one-output gate (except a three-
input XOR) can be configured as one tile. The tile can be configured as a latch with clear or set, or as a flip-
flop with clear or set. You can also implement flip-flops with both set and clear, but it will require multiple
tiles.

ProASICPLUS devices also contain embedded, two-port SRAM blocks with built-in FIFO/RAM control logic.
They do not have any special carry chain logic. The routing structure of ProASICPLUS devices is designed to
provide high performance through a flexible four-level hierarchy of routing resources:

• Ultra-fast local resources

• Efficient long-line resources

• High-speed, very long-line resources

• High performance global networks

The ultra-fast local resources are dedicated lines that allow the output of each tile to connect directly to
every input of the eight surrounding tiles (a typical delay of 0.3 ns). The efficient long-line resources
provide routing for longer distances, spanning one, two, or four tiles. The high-speed, very long-line
resources, which span the entire device with minimal delay, are used to route very long or very high
fanout nets. The long-line resources can go across the chip, but the delay can be large depending upon
macro placement.
August 2005 1
© 2005 Actel Corporation

ProASICPLUS Design Optimization
The ProASICPLUS architecture also contains four segmented global networks that can access all the logic,
memory, and I/O tiles on the die (a typical delay of 1.1 ns). You should have a basic understanding of the
core tile, memory architecture, and the routing resources, and give attention to these during the design
flow. Refer to the ProASICPLUS Flash Family FPGAs datasheet for details on ProASICPLUS architecture.

Design Optimization Overview
The Actel design flow uses various Actel tools as well as third party tools. Figure 1 shows the Libero IDE
Design Flow. Note that physical synthesis is an optional step in the design flow and may not be needed for
most designs.

You can do advanced design optimization using improved design techniques, or with the automated tools
used in the design flow, or both. The design techniques will provide more predictable results and may be
easier for the expert user. But it may also require changing the default settings for the design flow tools.
This will be discussed in the "General Recommendations" section on page 23. First, we will go over the
various design techniques and then we will go over optimization using the various design tools.

The general design technique, default flow, and settings will be sufficient for most designs. For some
designs, you may need to use these advanced techniques or advanced settings.

Figure 1 • Libero IDE Design Flow
2

http://www.actel.com/documents/ProASICPlus_DS.pdf
http://www.actel.com/documents/PA3_DS.pdf

ProASICPLUS Design Optimization
Design Architectural Level Consideration
The ProASICPLUS device core consists of a Sea-of-Tiles and has a fine-grained architecture. In the design,
the data travels through several layers of logic between the registers. In general, you will see an average
delay of 2 ns or less per level of logic after place-and-route. This should be considered when the design is
architected, so Actel recommends that you try to estimate the levels of logic while architecting the design.
Since the logic is 3-input combinatorial cells, multiply the estimated logic levels by two to get the
approximate delay. This approximate delay is reasonable for a typical design. If the approximate delay
seems to be greater than the requirement, you must pipeline the design. Note that if there is an
opportunity to pipeline a non-critical path, you should do it. This gives place-and-route more margin on
non-critical paths, which increases the chance of meeting delay on critical paths.

Depending on the design, there could be several multicycle or false paths. This is true specifically for
designs with state-machines. When designing a state-machine, insert wait-states wherever possible and
declare associated logical multicycle paths. This allows the place-and-route tool to focus on true critical
paths. As an example, consider the state machine shown in Figure 2. The registers reg1 and reg2 are
updated in st0 and also act as inputs to an adder function. The output of adder is used in st2. Since there
is no direct transition from st0 to st2, paths through this adder can take two clock cycles to propagate.
During design flow, you should use an SDC multicycle paths constraint with a path multiplier of 2 so that
the place-and-route can focus on other critical paths. Refer to the ProASICPLUS Timing Closure in Libero IDE
v5.2 application note for details on setting the SDC constraint and how Timing Driven Place-and Route
(TDPR) handles these constraints.

While architecting the design, follow the recommendations below to partition the design:

1. Keep the critical path within one block. Actel Designer software allows you to use the set_location
constraint to contain logic within a logical block that will be placed within a physical boundary. This
helps to contain all portions of the critical path within a close proximity.

2. Register the input/output port for the blocks. When creating different blocks, try to register to
output. This will make it easier to meet the timing requirements when you add more blocks.

For the design using heavily loaded internal buses, consider adding a wait-state to allow more than one
clock cycle if a single clock cycle cannot be met. You can also consider replicating the driver manually to
reduce fanout while avoiding the congestion associated with replicated nets. These techniques are
covered in the "HDL Coding" section on page 5.

Figure 2 • State Machine

st0

st0

st0

If (st0)
reg1 <= data1;
reg2 <= data2;

If (st1)
reg3 <= reg1;

If (st2)
reg4 <= reg1 + reg2;
3

http://www.actel.com/documents/APA_TimingClosure_AN.pdf
http://www.actel.com/documents/APA_TimingClosure_AN.pdf
http://www.actel.com/documents/APA_TimingClosure_AN.pdf

ProASICPLUS Design Optimization
Designing the Memory Blocks
One of the important issues during design architecting is the memory block design consideration. The
basic memory block size for ProASICPLUS is 256x9. You should architect the design to make best use of this
basic block, using memory in multiples of 256x9 (or 256x8). Rather than using a large quantity of small
memory blocks, it is better to combine these small memory blocks into a large memory block. On the other
hand, do not use excessively large memory blocks. That would force the design to use multiple memory
blocks by cascading in depth or width, and would increase memory access time. ProASICPLUS memory also
supports parity checking while writing/reading for memory, and no extra logic is required to generate this
parity logic. Refer to the ProASICPLUS Flash Family FPGA datasheet for more information.

Designing the Internal Tristate
ProASICPLUS devices support tristates as output ports, but not as internal tristates. All internal tristates
must be mapped to gates. In most cases, you do not need to convert internal tristates to multiplexers
(MUXes) manually. The Synthesis tool will attempt to map it to equivalent MUX or and-or logic structure.
Actel recommends that you do not use internal tristates inside the RTL code. As shown in Figure 3 and in
Figure 4 on page 5, internal tristates map to gates during synthesis. But, if you use the multiple edifs flow
and attempt to generate an edif netlist for the tristate block, Synplify® will generate an edif netlist with a
tristate macro at the port. Tristate is not supported at the lower level, so you would not be able to use this
edif netlist with the other edif netlists. For this reason, Actel recommends that you replace these internal
tristates with MUXes or and-or logic structure.

Figure 3 • Mapping for Internal Tristate Using Block at the Lower Level

E0

A Q

Q_1

E1

B

Q_2

E3

E2

DATAD

DATAD

E0

DATAA
E2

C

Q_3

E3

D

Q_4

Y

DATAC_m

NAND2

A

B

Y

$1N52_iv_0

 A021TTF

A

B
C

Y

DATAA_m

AND2

A
B

E1

DATAB
Y

DATAA_m

AND2

A

B

$1N52_v

OR3

A
B Y

C

Source Code Schematic Edif Netlist Using Tristate
Block at the Lower Level
4

http://www.actel.com/documents/ProASICPlus_DS.pdf
http://www.actel.com/documents/ProASICPlus_DS.pdf

ProASICPLUS Design Optimization
HDL Coding
Once the architecture of the design is decided, you must partition and code the design into multiple
blocks. Depending on how a design is coded, results can change dramatically. When writing the HDL code,
keep in mind the guideline of 2 ns of delay per level of logic. Estimate the number of levels of logic and
multiply it by 2 to get the clock cycle requirement. Do not try to exceed the clock cycle requirements. Here
are a few techniques that can be used to reduce delay while keeping the same functionality:

Anticipation
Most of the control signals in a design are generally high fanout signals. These signals are generated on
certain events and control how some registers are updated. Most of these control signals are decoded
from counters or state-machines. These paths will start from a counter or state-machine, go through a
decoder, and drive a high fanout signal that will go to the enable of several registers.

Figure 4 • Mapping the Internal Tristate at Top Level

E3

E0

A

B

E1

E2

D

C

Q

Q_t_0

G_1_i_a2_0

OR2
A
B Y
C

G_1_i_a2

OR3
A
B Y
C

Q_iv_0_a2

AND2

A
B

Y

Q_iv_0

OR3
A
B
C

Y

Q_iv_0_a2_0

AND2

A

B
Y

Q_iv_0_0

A021TTF
A
B Y
C

Q_iv_0_a2_1

NAND2
A

B
Y

5

ProASICPLUS Design Optimization
The pseudocode below serves as an example. There is an 8-bit down counter and the terminal count is
used to update a wide 64-bit vector. The block diagram is shown in Figure 5.

@(posedge clock)

 if (condition_1 == true)

 count <= 8'hff ;

 else if (condition_2 == true)

 count = count - 1; //down counter

@(posedge clock)

 wide_bus[63:0] = (count == 8'b0)? Data1: data2;

Because the counter is an 8-bit counter, it will take two levels of logic to decode, provided the Synthesis
tool uses a three-input gate during optimization. The decoder output will have a fanout of 64 and this net
is driving the select lines of 2:1 MUXes. So, in the critical path there are three levels of logic (two for the
decoder and one MUX) and also a high fanout net of 64. The delay on the 64 fanout net can be quite high
and a reasonable assumption of the delay per level on this path will be around 3 ns. Once you add these
delays, you will get 2 + 2 + 2 + 3 = 9 ns. So, you can run this design at approximately 110 MHz.

Figure 5 • 8-Bit Down Counter Controlling a Wide 64-Bit Vector

D0
En0

D1
En1

count1

count 0

count7

D7
En7

Decoder

Fanout = 64

2 levels of logic

== '1'
6

ProASICPLUS Design Optimization
If your design requirement is greater than 110 MHz, you can rewrite the code as shown below.

@(posedge clock)

 if (condition_1 == true)

 count <= 8'hff;

 count_is_0 <= 0;

 else if (Condition_2 == true)

begin

 count <= count - 1; //down counter

 if(count == 8'h01)

 count_is_0 = 1;

 else

 count_is_0 = 0;

end

 @(posedge clock)

 wide_bus[63:0] = (count_is_0 = = 1) ?Data1: data2;

This functionally of the new code is identical to that of the original code. In this code we will anticipate in
advance (one cycle before) when the down counter is approaching 0. The decoder will drive a register,
which will drive the MUXes. The decoder path will have three levels of logic with a fanout of 1, and the
high fanout select path will have only one level of logic. The approximate delay between registers using
the modified code is around 6 ns and the logic will run at approximately 180 MHz.

Figure 6 • Modified Counter Design with Added Register

D0
En0

D1
En1

count1

count 0

count1

D7
En7

Decoder

condition2

Fanout = 64

2 levels of logic

== '1'
7

ProASICPLUS Design Optimization
Instantiation
While synthesizing the design with Synplify or another tool, the intended results may not occur. Various
synthesis options using Synplify are covered in the "Synthesis with Synplify" section on page 16. But, you
can control the synthesis result by instantiating a gate level macro in the HDL code, and in most cases this
will provide better results. Consider the following two examples.

Example1
Consider the decoder used in the anticipation section. You can map to the decoder symmetrically or
asymmetrically, as shown in Figure 7. If all the counters output are critical, you should use the symmetric
mapping. If the output of one counter is in the critical path, use the asymmetric mapping. For predictable
results, Actel recommends instantiating the decoder code in the design.

Example2
Consider the following counter code:

reg [7:0] count;

@(posedge clock)

 if(condition == true)

 count = count + 1;

During synthesis, you may map the code as shown in Figure 8 on page 9. If the counter condition is
decoded from several other signals, it will have decoder logic followed by a long carry chain through the
adder. This implementation is good for architecture with a carry chain. ProASICPLUS does not have a carry
chain macro and you may need to put in a lot of effort to meet the timing goal during place-and-route.

Figure 7 • Mapping Decoder Block

Asymmetric

Symmetric

D0
En0

En1

En7

D1

D7

Count[0]
Count[1]

Count[2]

Count[3]
Count[4]

Count[5]

Count[6]

Count[7]

Count[0]
Count[1]
Count[2]

Count[3] Count[5]

Count[6]
Count[4] Count[7]

== O
8

ProASICPLUS Design Optimization
You can modify this code as follows:

inc8bit instance1_inc8bit(.DataA(count), .Sum(count_inc)); //instantiate an 8-bit
//incrementor

 @(posedge clock)

 if(condition == true)

 count = count_inc;

Here we have instantiated an incrementer in the code for the counting operation as shown in Figure 9.
The condition signal will pass through MUX rather than through the carry chain logic, thus reducing the
delay.

Replication
ProASICPLUS routing has built-in buffering for routing channels at repetitive intervals, so Designer removes
all the buffers and inverters from the netlist by default. Occasionally the built-in buffering is not sufficient
for a design with several high fanout nets. The Synthesis tool allows you to replicate drivers for high
fanout nets. Doing a great deal of replication all over the design may increase congestion, leading to
excessive timing. Since synthesis has no knowledge of how logic will be placed, it will distribute the load
on replicated drivers randomly. During place-and-route, the same logical net may be going in the opposite
direction.

Consider the example shown in Figure 10 on page 10. The register FF1 is driving 3 blocks. The output of
the FF1 has a fanout of 16 inside BLK2, 24 inside BLK3, and 16 inside BLK4. If you allow synthesis to do
replication globally, the result may be a congested design as shown in Figure 11 on page 10.

Figure 8 • Simple Counter with Condition Assignment

Figure 9 • Modified Counter with Condition Assignment

Cin

Condition

"00000000"

Adder
Logic to
generate
"condition"

DataA[7:0] DataB[7:0]

Incrementor

ConditionLogic to
generate

"condition"
9

ProASICPLUS Design Optimization
You can avoid this by replicating the net driver manually in HDL (replicating the FF1 manually). Instantiate
two duplicated registers (FF_cp1 and FF_cp2), as shown in Figure 12 on page 11, and connect them to
different blocks. Note that if you use the global retiming options in Synplicity, this may again create
congested routing. You can turn off the global retiming option for BLK1 using the Synplify attribute, as
shown below. This will reduce the congestion and improve the timing for the design.

define_attribute {BLK1} syn_allow_retiming {0}

Figure 10 • FF1 is Driving Signal Inside Three Blocks

Figure 11 • Synthesis Register Duplication May Cause Congestion

BLK1

16

16
24

BLK2

BLK4

BLK3

FF1

BLK1

FF1

BLK2

BLK4

BLK3
FF1

_ret
1

FF1
_ret
10

ProASICPLUS Design Optimization
Redundant Priority
An If-Else statement is used to execute sequential statements conditionally based on a value, whereas a
case statement implies parallel encoding. In general, If-Else constructs are much slower for parallel
encoding. The If-Else statements are appropriate to use for priority encoders, assigning the highest
priority to a late arriving critical signal. Consider the implementation for an If-Else statement shown in
Figure 13. The signals e and f will have high delay going to output.

For the case statement, the signal will have less delay than the If-Else statement. The implementation is
shown in Figure 14 on page 12. If e or f is in the critical path, it is better to use the case statement. To
quickly spot an inefficient nested if statement, scan code for deeply indented code. To avoid long path
delays, do not use extremely long nested If-Else constructs. In general, use the case statement for complex
decoding and use If-Else statements for speed-critical paths.

Figure 12 • Manual Register Duplication to Reduce Congestion

Figure 13 • Mapping If-Else Statement to a Priority Encoder

FF1

FF1_
cp1

FF1_
cp2

BLK1

BLK2

BLK3

BLK4

24

16

16

f

e

d

cs = 10

s = 01

s = 00

pout
11

ProASICPLUS Design Optimization
Timing Exceptions
When creating HDL, be aware of the timing exceptions and apply them in the place-and-route tool. In the
design, you can have long paths that may be allowed more than one clock cycle to propagate. You can use
the timing exceptions constraint so that Designer has less difficulty with these long paths.

As an example, consider the design shown in Figure 15 on page 13. In this case, there are three enable
signals (E1, E2, and E3) used for the three FFs. The signal E2 comes two cycles later than E1, as shown in
Figure 15 on page 13. In the first clock edge, the data will pass to the output of FF1. In the third clock
edge, the data will pass to the output of FF2. In the fourth clock edge the data will pass to the output of
FF3. Assume that after the initial place-and-route, you found that the delay from CLK:FF1 to D:FF2 is 25 ns
and the delay from CLK:FF2 to D:FF3 is 45 ns, which is more than one clock cycle. You need to optimize the
timing for CLK:FF2 to D:FF3.

This design does have enough margin for CLK:FF1 to D:FF2 to meet the timing. During TDPR, set multicycle
from CLK:FF1 to D:FF2 and force the TDPR to focus on a CLK:FF2 to D:FF3 path. This may enable you to
meet timing constraints. Another way to fix the violation is to modify the code so that EN2 comes one
cycle later than EN1, and EN3 comes two cycles later than E2. Then place-and-route should be able to meet
timing constraints easily, since the CLK:FF2 to D:FF3 path becomes a two-cycle path.

Figure 14 • Mapping a Case Statement

C

E

S[1:0]

D

F

MUX2H

A

S

muxout_1_0

Y

MUX2H

S

muxout_3_0

Y

MUX2H

A

S

muxout_2_0

Y

muxout

[1]

[1:0]

[1]
[0]

B

B A

B

12

ProASICPLUS Design Optimization
Additional Tips for HDL Coding

Using Core Tile Instead of RAM Blocks for Small Memories
ProASICPLUS has dedicated memory blocks located at the top and bottom of the die. In some cases, the
routing between the core tile and the memory blocks may add a long delay. If the design does not require
too much memory, you can use the register file to generate memory. The ACTgen tool allows you to
generate memory, using core tiles called "distributed memories," and helps to reduce the accessing time.

Modifying Extra Logic on the FIFO Flag from the ACTgen Netlist
During typical design flow, Actel recommends that you use ACTgen to generate memory blocks. During
the generation of wide-cascade memory blocks with ACTgen, the code will use OR logic for all the flags. It
will use the flag for all the blocks, and then use the OR function to generate the final flag. If your design
requires FIFO flags and wide-cascade FIFO implementation, you can use a flag from only one block instead
of using the final flag.

As an example, suppose you want to build a FIFO configuration of 32x32 and use the full and empty flag
to control other parts of the design. With the default implementation, ACTgen will use four memory
blocks and use OR logic for the flags, as shown in Figure 16 on page 14. For this configuration, if one FIFO
block is full or empty, all other blocks are full or empty, since data are written simultaneously to all four
blocks. You can modify the ACTgen-generated code, eliminate the OR gates used for flags, and take
output from one block, as shown in Figure 17 on page 15.

Figure 15 • Multicycle Design Example

FF1 FF3FF2
25 ns 45 ns

EN1 EN2 EN3

EN1

EN2

EN3

0 20 40 60 80 100 120 140 160 180 ns
13

ProASICPLUS Design Optimization
Figure 16 • Cascaded Memory Blocks from ACTgen

LGDEP2
LGDEP1

LGDEP0

RESET
LEVEL7
LEVEL6
LEVEL5
LEVEL4
LEVEL3

LEVEL2
LEVEL1

LEVEL0
WCLKS
RCLKS

D18
D17
D16

D15

D14
D13

D12
D11
D10
WRB
RDB

WBLKB
RBLKB

PARODD
DIS

DO8

DO7
DO6

DO5
DO4
DO3

DO2
DO1

DO0
FULL

EMPTY

EQTH
GEQTH

WPE
RPE

DOS

[8]
[7]
[6]
[5]

[4]
[3]

[2]
[1]

[0]

[0]

[2]
[3]

[4]

[5]
[6]

[8]

[1]

[7]

RESET

WCLOCK

RCLOCK

FIFO256X9SST

DI[31:0]

WRB

RDB

[31:0]

MO

OR3

A

C

U3

OR2

 U4

A
B Y

[31:0] DO[31:0]

FULL
B

14

ProASICPLUS Design Optimization
Register the FIFO Flag
ProASICPLUS FIFO has four flags: empty, full, eqth, and geqth. These flags are generated on the falling
edge of the clock, as shown in Figure 18 on page 16. This may cause a half-cycle issue and your design may
have difficulty meeting it. Actel recommends you add a register at the output of the flags, as shown in
Figure 19 on page 16. This may increase your latency, but it increases your throughput.

Figure 17 • Modified Cascaded Memory Blocks

LGDEP2
LGDEP1

LGDEP0

RESET
LEVEL7
LEVEL6
LEVEL5
LEVEL4
LEVEL3

LEVEL2
LEVEL1

LEVEL0
WCLKS
RCLKS

D18
D17
D16

D15

D14
D13

D12
D11
D10
WRB
RDB

WBLKB
RBLKB

PARODD
DIS

DO8

DO7
DO6

DO5
DO4
DO3

DO2
DO1

DO0
FULL

EMPTY

EQTH
GEQTH

WPE
RPE

DOS

[8]
[7]
[6]
[5]

[4]
[3]

[2]
[1]

[0]

[0]

[2]
[3]

[4]

[5]
[6]

[8]

[1]

[7]

RESET

WCLOCK

RCLOCK

FIFO256X9SST

DI[31:0]

WRB

RDB

[31:0]

MO

DO[31:0]

FULL

EMPTY
EQTH

GEQTH
15

ProASICPLUS Design Optimization
Optimization Using Design Flow Tools
The Actel design flow uses various Actel tools as well as third party tools. Figure 1 on page 2 shows the
Libero IDE Design Flow. The default flow and settings will be sufficient for most designs. For some designs,
you can change the default settings and may need to come back to the beginning or middle of the flow,
after finishing place-and-route, to use the iterative flow. The following sections will cover the various
techniques you can use when the default flow and settings do not provide the desired results.

The main steps during design flow are as follows:

• Synthesis with Synplicity

• Physical synthesis with PALACE®

• TDPR (timing driven place-and-route) and floorplanning in Designer

The various optimization techniques for these steps are explained in the following sections.

Synthesis with Synplify
The default Synplify options seek to achieve the best result with various tradeoffs. This section describes
optimization techniques using Synplify when the default settings do not provide the desired result. This
section will provide the efficient design practices that you can use to reduce logic levels on a critical path.
First there are three important features for optimization that are available in Synplify: resource sharing,
retiming, and multipoint synthesis. These sections are followed by a review of general optimization tips.

Figure 18 • ProASICPLUS FIFO Flags Timing

Figure 19 • Register the FIFO Flag

RCLK

RDB

RDATA

RPE

EMPTY

FULL

EQTH, GETH

New Valid Data Out Empty Inhibits ReadOld Data Out

Cycle Start

tECBH, tFCBH
tECBA, tFCBAtTHCBH

tHCBA

tCML
tCCYC

tCMH

tRPCA

tOCA

tRDCS

tRDCH

tOCH
tRPCH

DJ [3.0] D Q
OFF

CLK

ACLOCK
WCLOCK

WAB
RDB
RESET
LEVEL [3.0]
16

ProASICPLUS Design Optimization
Resource Sharing
Resource sharing is an optimization technique in the synthesis tool that uses a single functional block
(such as an adder or comparator) to implement several operators in the HDL code. One way to optimize
area is to use resource sharing. This is on by default. You can improve timing by disabling resource sharing,
but at the expense of increased area. As shown in Figure 20, the default resource sharing will share the
adder, and this will cause a high logic level for the enable signal, E1. If you turn it off, then enable E1 will
have fewer logic levels and less delay, as shown in Figure 21. If the enable is in the timing critical path, you
can turn off resource sharing for this block to get better timing.

Retiming
Retiming is only available in the Synplify Pro tool. Retiming allows improvement of the timing
performance of sequential circuits without the necessity of modifying the source code. It moves and also
adds registers across combinatorial gates to improve timing without changing functionality between the
inputs and outputs of the design. It does not change the number of registers in a cycle or path from a
primary input to a primary output, but increases the total number of registers in the design.

Figure 20 • Resource Sharing in Synplicity

Figure 21 • No Resource Sharing in Synplicity

E1

+A1[7:0]

B1[7:0]

C1[7:0]

D1[7:0]

F1[7:0]

F1[7:0]

[7:0]

[7:0]

[7:0]

[7:0] [7:0]

[7:0]

[7:0]
[7:0]

[7:0]

0

1

un1_d1[7:0]

0

1
[7:0]

[7:0]

[7:0]

[7:0]
[7:0]

un1_c1[7:0]

A1[7:0]

B1[7:0]

F1[7:0]

F1[7:0]

[7:0]

[7:0]

[7:0]

[7:0][7:0]

un3_ff[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]
[7:0]

[7:0]

f1[7:0]

[7:0]
+

+

C1[7:0]

D1[7:0]

E1
17

ProASICPLUS Design Optimization
Consider the example in Figure 22 and Figure 23. This example shows how, after retiming, the two
registers on the inputs are merged into one register after the OR gate. The design as a whole retains the
same functionality before and after retiming, but now the critical path is much slower. Refer to the
Synplify AE for Actel User’s Guide for information about using retiming options.

Multipoint Synthesis
Multipoint synthesis allows you to break down the design into smaller blocks called compile points
(available in the Synplify Pro tool only). These smaller blocks are treated as one block for incremental
mapping. During resynthesizing, the blocks that have already been synthesized are not resynthesized. This
is important if you do not want synthesis to change the result for some blocks during incremental design
flow. Refer to the Synplify AE for Actel User’s Guide for a step-by-step explanation of the Multipoint
synthesis flow.

Optimization Tips Using Synplify
The following sections describe various optimization tips using Synplify. The first section covers general
optimization tips that apply to both speed and area optimization at the same time. Then speed and area
optimization will be covered separately.

Figure 22 • No Retiming

Figure 23 • Using Retiming

ff_0_.Q
N_3_i.G_3 g1 output.G_2

D Q
R

D Q
R

output

input2[1:0]

rst

clk
input1[1:0]

[0]
[0][0][0] [1]

[1]

[1][1]

[1:0]

[1:0]

output

output.G_2

[0]

[1]

g1
ff_ret.QN_3_i.G_3

[0]
[1][1:0]

[1:0]

clk

rst

input1[1:0]

input2[1:0]

S

D Q
18

http://www.actel.com/documents/synplify_ug.pdf
http://www.actel.com/documents/synplify_ug.pdf

ProASICPLUS Design Optimization
General Optimization Tips
This section contains general optimization tips that are not directly area or timing-related.

• For best results during synthesis with a timing-critical design, explicitly define each clock frequency
with a constraint, instead of using a global clock frequency. This will relax less non-critical clocks
and allow synthesis to focus on more critical clock domains.

• Some heavily congested designs benefit from hierarchical optimization techniques. An easy way to
check the congestion is to check the number of Opens/Short nets after the first pass during routing.
If you see many open nets during routing in Designer and timing is not important, you can keep the
hierarchy for those blocks. During synthesis, set the syn-hier attribute to hard for those blocks.

• The fanout setting is a very important criterion for design optimization in ProASICPLUS. The default
fanout setting for ProASICPLUS is 12. To honor this limit, Synplify either replicates components or
adds buffers. It reduces fanout on input ports through buffering and reduces fanout on nets driven
by registers or combinatorial logic through replication. For internal signals, the software first tries
replication, replicating the net driver and splitting the net into segments. This increases the number
of register bits in the design. When replication is not possible, the software buffers the signals. You
can control whether high fanout nets are buffered or replicated, using the techniques described
here.

– To use buffering instead of replication, set syn_replicate to a value of 0 globally, or on modules
or registers. Replication prevents a signal from taking advantage of the local clock network. If
you turn off replication, you have the ability to promote the signal to a local clock during a later
stage of the design flow. This is important if you want to promote any signal to a local clock. By
default, Designer removes the buffer, so you can promote that signal to a local clock easily.
Replicating prevents you from doing that.

– A simple way to turn off buffering and replication entirely is by setting syn_maxfan to a very
high number, such as 1000. Then use the gcf constraint in Designer to do global management,
and this may give you better results.

Area Optimization Tips
This section contains information on setting options in Synplify for area optimizing.

• Increase the fanout settings. A higher limit means less replicated logic and a consequently smaller
area.

• Check the Resource Sharing option when you set implementation options. With this option
checked, the software shares resources like adders, multipliers, and counters wherever possible, and
minimizes area.

• For designs with large state machines, use the gray or sequential encoding styles. They typically use
the least area.

Timing Optimization Tips
This section contains general optimization tips that are timing-related.

• Apply Timing constraints and use realistic design constraints. The timing constraint should be within
10–15% of the real goal. For example, if the goal is 50 MHz, you can apply 55 MHz during synthesis.

• Use individual clock constraints. Using global clock constraints will not give your desired result.
Besides using individual clock constraints, apply false path and multicycle path constraints.

• Use one hot encoding style for state machines as it will have the fastest implementation in most
cases. However, if you have a large decoder at the output, use another coding style.

• If you saw warnings about a feedback MUX being created for signals when you compiled your
source code, make sure to assign set/resets for the signals. This improves performance by
eliminating the extra MUX delay on the input of the register.

• As explained before, you can achieve better timing by disabling Resource Sharing if the critical path
goes through arithmetic components.

Finally, check the Synplify log report, which includes usage report, timing report, net buffering report,
etc., before moving to the place-and-route tool.
19

ProASICPLUS Design Optimization
PALACE Physical Synthesis
PALACE® is a physical synthesis tool that optimizes the gate count and performance with respect to device
resources and design constraints. The default option normally provides optimal performance. Here are a
few key ProASICPLUS design optimization techniques using PALACE.

• For designs with small area utilization, use the Physical Effort option to get complete placement
information.

• If there are critical clocks, set tight timing constraints on these clocks, and loosen the constraints on
some of the non-critical clocks. Similar to Synplify, tighten the constraints on the critical clocks by
10% more than the desired results for iterative optimization.

• Use the "logic synthesis effort" level of 3 for timing-critical designs. During the internal testing, the
"logic synthesis effort" level of 3 provides better timing results than using the level of 4.

• For area optimization, use a "logic synthesis effort" level of 1.

To find the best options for your design, you can run the aa_prun.tcl file, available in the scripts folder of
the PALACE installation disk. Review the results, which will show you the outcome for combinations of
various settings.

TDPR and Floorplanning in Designer
Designer is the Actel place-and-route tool. By default, Designer attempts to remove all logics from the
netlist that has no effect on the functional behavior. Designer takes advantage of the inverted inputs of
logic tiles by removing inverters. This reduces the overall size and also produces a faster place-and-route
time. These actions are done during compile. No area optimization will happen after that, so there are not
many opportunities for area optimization in Designer. For any design, one of the key points is to have no
hold violations. This applies to all synchronous designs, even where performance is not critical. If you have
a clock signal with a high fanout, assign the clock signal to a global network or clock spines. This will
reduce the clock skew and remove any hold violations.

Timing Optimization with TDPR
For timing optimization, an important step is to apply complete timing constraints during place-and-
route. Actel provides a static timing analysis tool called SmartTime for the ProASICPLUS family. SmartTime
supports a range of timing constraints to provide useful analysis. The SmartTime static timing analysis tool
works very tightly with the Actel place-and-route tool. You can also import SDC timing constraints
generated by the synthesis tool, as explained in the "Synthesis with Synplify" section on page 16, or you
can create your own SDC constraints.

Here are some tips for achieving timing optimization using timing constraints.

• Apply all timing constraints, including false path and multicycle path. Look into the HDL code and
determine the false path and multicycle paths for your design.

• Run TDPR and check for violations.

• If there are fewer than 50 timing violations remaining at this point, add specific user path sets and
apply the max delay constraint using the SmartTime GUI. Then run TDPR.

• When there are only a few timing violations, perform incremental placement in the layout stage. In
this case, timing constraints can be met without affecting the performance of the rest of the design.

Timing Optimization with Physical Constraints and Floorplanning
Floorplanning guides the place-and-route process to ensure the success of your placement into user-
defined areas of the device. It is very important to understand the ProASICPLUS architecture before you try
to floorplan a design.

One of the important architectural details is the ProASICPLUS Global Architecture. During compile,
Designer will automatically place high fanout nets and some essential nets on global clock networks.
However, this assignment might not reflect the best global assignment and may reduce overall
performance. To prevent this, manually force Designer to place certain nets on the global networks or
clock spines. In most of the design, you do not need to use all four global clock networks. Instead, use the
set_auto_global and dont_fix_global commands to free up your global clock networks. This is necessary to
20

ProASICPLUS Design Optimization
accommodate specific nets you want to promote to clock spine assignments. Also, if the global signal does
not need to go to all blocks or has less fanout, you can use region constraints and free up some spines of
that global network. Refer to the Optimal Usage of Global Network Spines in ProASICPLUS Devices
application note for details.

Timing optimization can be also achieved by floorplanning. Before creating a floorplan, it is very
important to identify the critical paths in your design. You should assign high fanout or critical path nets
to a region only after you have used up your global routing and clock spine networks. To get more
information on the various floorplanning techniques, refer to the Floorplanning ProASIC /ProASICPLUS

Devices for Increased Performance application note. For some designs, no amount of floorplanning can
improve their performance compared to push-button place-and-route. For timing-critical designs, apply
region constraints as the last step for achieving timing constraints.

MultiView Navigator Tips
This section includes an additional tip for design optimization using floorplanning. This tip is not covered
in the floorplanning application notes. In some cases you may need to move the logic away from the
source to get better timing. You can use this technique if you have only a few violations and as a last
resource for timing optimization.

For example, consider the design where an FF1 is driving 8 logic blocks, as shown in Figure 24 on page 22.
Place the logic blocks adjacently, as in Figure 24 on page 22, to get the best timing for all blocks. For this
design, suppose the critical path is going through MUX5. If you move it from the adjacent location of FF1,
this will reduce the delay on the net connected between the FF1 and MUX5. See Figure 25 on page 23 for
the timing delay.

This is due to the routing structure in ProASICPLUS device. In ProASICPLUS, the efficient long-line resources
provide routing for longer distances and higher fanout connections. These resources vary in length
(spanning 1, 2, or 4 tiles). You can take advantage of this routing instead of using ultra-fast connection for
a congested design. If you move the MUX5 by 1 tile, you can use the efficient long-line resources instead
of the direct connect, and distribute the load to the fuse connecting the long-line.
21

http://www.actel.com/documents/PAPLUS_Spines_AN.pdf
http://www.actel.com/documents/PAPLUS_Spines_AN.pdf
http://www.actel.com/documents/Flash_Floorplanning_AN.pdf
http://www.actel.com/documents/Flash_Floorplanning_AN.pdf
http://www.actel.com/documents/Flash_Floorplanning_AN.pdf

ProASICPLUS Design Optimization
Figure 24 • Design Schematic

FF1

D Q
OFF

CLK

B
Y

SA

B
Y

SA

B
Y

SA

B
Y

SA

B

Y

SA

B
Y

SA

B
Y

SA

B

Y

SA

MUXZH

MUXZH

MUXZH

MUXZH

MUXZH

MUXZH

MUXZH

MUXZH

MUX[0]

MUX[1]

MUX[2]

MUX[3]

MUX[4]

MUX[5]

MUX[6]

MUX[7]
22

ProASICPLUS Design Optimization
General Recommendations
Various techniques for area and timing optimization were presented in the previous sections. You may
need to experiment to find out the best techniques for your design. It is not feasible to make only one
recommendation and point out the technique or techniques that will be best suited for a specific design.
In general, you should focus mainly on HDL coding and synthesis. Most HDL-based designs use either a
top-down or bottom-up (block-based) design methodology. Depending on size, type, design complexity,
design environment, or existing flows, one may be more suitable than another.

For ProASICPLUS, here is the design flow Actel recommends.

• Create your RTL source code.

• Run synthesis with default options.

• Run Designer with timing constraints.

• Check the timing. If there are no violations, your design is complete.

• If you see violations, check the number of paths having violations and average delay per gate.

– If you have only a few violations, try the tips used in the MultiView Navigator and TDPR sections.

– If you see an average delay of more than 2 ns for each number of logic levels, you can use the
timing and floorplanning techniques.

– If you see the average delay is less than 2 ns per logic level, then you should go to HDL coding
and work on it.

Figure 25 • Timing for Placing Macro in Different Location

23

ProASICPLUS Design Optimization
Conclusion
This application note describes various ways to get timing and area closure for ProASICPLUS designs.
Traditional approaches such as working with the constraints or floorplanning add value to the timing
closure process, but smarter synthesis options, physical synthesis, and RTL coding help to make it faster
and consistently reusable for design iterations. The overriding goal is to help you achieve the design goal
more rapidly. After studying the HDL coding guide and the various techniques in this application note,
you should be equipped to achieve your design goal quickly.

Related Documents

Application Notes
ProASICPLUS Flash Family FPGAs

www.actel.com/documents/ProASICPlus_DS.pdf

ProASICPLUS Timing Closure in Libero IDE v5.2

www.actel.com/documents/APA_TimingClosure_AN.pdf

Optimal Usage of Global Network Spines in ProASICPLUS Devices

www.actel.com/documents/APA_Spines_AN.pdf

Floorplanning ProASIC/ProASICPLUS Devices for Increased Performance

www.actel.com/documents/Flash_Floorplanning_AN.pdf

User’s Guides
Synplify AE for Actel User’s Guide

http://www.actel.com/documents/synplify_ug.pdf
24

http://www.actel.com/documents/ProASICPlus_DS.pdf
http://www.actel.com/documents/ProASICPlus_DS.pdf
www.actel.com/documents/ProASICPlus_DS.pdf
http://www.actel.com/documents/APA_TimingClosure_AN.pdf
www.actel.com/documents/APA_TimingClosure_AN.pdf
http://www.actel.com/documents/PAPLUS_Spines_AN.pdf
http://www.actel.com/documents/APA_Spines_AN.pdf
http://www.actel.com/documents/APA_Spines_AN.pdf
http://www.actel.com/documents/Flash_Floorplanning_AN.pdf
http://www.actel.com/documents/synplify_ug.pdf
www.actel.com/documents/Flash_Floorplanning_AN.pdf
http://www.actel.com/documents/Flash_Floorplanning_AN.pdf
http://www.actel.com/documents/synplify_ug.pdf
www.actel.com/documents/APA_TimingClosure_AN.pdf

51900111-0/8.05

Actel Corporation

2061 Stierlin Court
Mountain View, CA
94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600

Actel Europe Ltd.

Dunlop House, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Phone +44 (0) 1276 401 450
Fax +44 (0) 1276 401 490

Actel Japan
www.jp.actel.com

EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668

Actel Hong Kong
www.actel.com.cn

Suite 2114, Two Pacific Place
88 Queensway, Admiralty
Hong Kong
Phone +852 2185 6460
Fax +852 2185 6488

www.actel.com

Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.

http://www.jp.actel.com
http://www.actel.com.cn
http://www.actel.com

	ProASICPLUS® Design Optimization
	Introduction
	Overview of ProASICPLUS Architecture
	Design Optimization Overview
	Figure 1 . Libero IDE Design Flow

	Design Architectural Level Consideration
	Figure 2 . State Machine
	Designing the Memory Blocks
	Designing the Internal Tristate
	Figure 3 . Mapping for Internal Tristate Using Block at the Lower Level
	Figure 4 . Mapping the Internal Tristate at Top Level

	HDL Coding
	Anticipation
	Figure 5 . 8-Bit Down Counter Controlling a Wide 64-Bit Vector
	Figure 6 . Modified Counter Design with Added Register

	Instantiation
	Figure 7 . Mapping Decoder Block
	Figure 8 . Simple Counter with Condition Assignment
	Figure 9 . Modified Counter with Condition Assignment

	Replication
	Figure 10 . FF1 is Driving Signal Inside Three Blocks
	Figure 11 . Synthesis Register Duplication May Cause Congestion
	Figure 12 . Manual Register Duplication to Reduce Congestion

	Redundant Priority
	Figure 13 . Mapping If-Else Statement to a Priority Encoder
	Figure 14 . Mapping a Case Statement

	Timing Exceptions
	Figure 15 . Multicycle Design Example

	Additional Tips for HDL Coding
	Using Core Tile Instead of RAM Blocks for Small Memories
	Modifying Extra Logic on the FIFO Flag from the ACTgen Netlist
	Figure 16 . Cascaded Memory Blocks from ACTgen
	Figure 17 . Modified Cascaded Memory Blocks

	Register the FIFO Flag
	Figure 18 . ProASICPLUS FIFO Flags Timing
	Figure 19 . Register the FIFO Flag

	Optimization Using Design Flow Tools
	Synthesis with Synplify
	Figure 20 . Resource Sharing in Synplicity
	Figure 21 . No Resource Sharing in Synplicity
	Figure 22 . No Retiming
	Figure 23 . Using Retiming

	PALACE Physical Synthesis
	TDPR and Floorplanning in Designer

	MultiView Navigator Tips
	Figure 24 . Design Schematic
	Figure 25 . Timing for Placing Macro in Different Location

	General Recommendations
	Conclusion
	Related Documents
	Application Notes
	User’s Guides

