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Placement W]

SIL.
» Place logic cells within the flexible blocks
e ldeal objectives
- guarantee the router can complete the routing step
- minimize all the critical net delays
- make the chip as dense as possible
- minimize power, crosstalk between signals

e Realistic objectives
- minimize total estimated interconnect length
- meet the timing requirement for critical nets
- minimize the interconnect congestion



Placement Terms W

Sit
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Placement Terms w

Manhattan distance vs Euclidean distance
Minimum Rectilinear Steiner Tree (MRST)
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Placement Algorithms W

e Constructive placement method
- Min-cut algorithm
» cut the placement area into two pieces
» swap logic cells to minimize cut cost
e repeat and cut smaller pieces till all cells placed
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Placement Algorithms

e Constructive placement method
- Eigenvalue placement algorithm
» cost matrix or weighted connectivity matrix
e quadratic optimization problem

e lIterative placement method

- take existing placement and improve it
- pairwise interchange algorithm
- force-directed algorithm
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Physical Design Flow

 Initial floorplan

« Synthesis with load constraints

e Timing-driven placement

e Synthesis with in-place optimization
e Detailed placement

e Global routing

e Detailed routing



Physical Design Flow
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Global Routing W]

o Two types of areas to global route
- inside the flexible blocks
- between blocks

e Objectives
- start from a floorplan and placement
- minimize the total interconnect length

- maximize the probability that the detailed router can
complete the routing

- minimize the critical path delay



Measurement of Interconnect Delay W

e Elmore delay model
- after placement, the logic cell position fixed
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Global Routing Between Blocks

 Numbering channels
o Channels form the edge of a graph
e Each channel has a capacity
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Global Routing Between Blocks W

e Find terminals of nets
e Find minimum-length tree

e Minimum-length tree != Minimized delay
between terminals (A1 to D1)
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Detailed Routing

e Goal
- complete all connections between logic cells

e Objectives
- minimize total interconnect length and area

- minimize # of layer changes (vias)
- minimize delay of critical paths
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Detailed Routing W]

e Routing pitch rules
- via-to-via (VTV) pitch
- via-to-line (VTL) pitch
- line-to-line (LTL) pitch
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Router’s View of the Cell

e Phantom
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Terms in Detailed Routing

Trunks
- running in parallel to the channel

Branches

- connecting trunk to terminals
Tracks

- horizontal track spacing

Terminal
- column spacing
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Terms in Detailed Routing TJ

vacant unused
terminal terminal

4 horizonta

tracks \
(@) + ................... mi [ . . ._,“ :; B
m2 r : z
e T WS | -

r
................... r

horizontal track
pitch=8 A

( 40
expanded

view of
channel

(b)
77

cell

abutment v '
box | vertical track
pitch=81

17



Channel Density

e Global density
e Local density
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Detailed Routing

e Manhattan routing
- preferred direction
- preferred metal layer
- logic cell connectors on 1 metal only
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2-Layer Routing

o Left-edge algorithm
- 1. sort the nets from the leftmost edge

2.
. assign next net that can fit to the track
. repeat step 3 until no more net can fit
. repeat step 2-4 until all nets assignhed

g1 AN W

assign first net to the first free track
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Left-Edge Algorithm Example




Multi-Layer Routing

e Polysilicon + 2-level metal
- 2.5-layer routing
- poly only for short connections
« 3-layer routing
- M1 horizontal, M2 vertical, M3 horizontal (HVH)
- M1 vertical, M2 horizontal, M3 vertical (VHV)
- M3 pitch is multiples of M1
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3-Layer Routing Example W
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Final Routing Steps

e Timing-driven detailed routing

reduce # of vias
alter interconnect width
minimize overlap capacitance

e Unroutes

leave problematic nets unconnected
complete interconnects with violation

e To resolve

discover the reason and revisit synthesis and floorplan
return to global router, change bin size

engineering change orders (ECO)

via removal and routing compaction
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Special Routing

e Clock Routing
- minimize clock skew
- clock tree synthesis
- clock-buffer insertion
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Special Routing W]

 Power Routing
- electromigration
- size the power buses according to the current

TABLE 17.1 Metallization reliability rules for a typical 0.5 micron (| = 0.25 m m) CMOS process.

Layer/contact/via Current limit |  Metal thickness 2  Resistance 3

m1 1TmAmm-™! 7000 A 95 m W /square
m2 1mAmm-? 7000 A 95 m W /square
m3 2mAmm™! 12,000 A 48 m W /square

|:] Wel Taps Cell placed at a regular interval

Contmuous NWELL STOCELLS

- tap-cell
- end-cap cell
- de-cap cell




Notes

e Encounter tutorial to be discuss next lecture
» Detailed class project description

to be release by Friday
behavioral code to be submitted
account for 30% of the project

by 11/22 before thanksgiving

if late, by 11/28, discount by 40%
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Questions?

Comments?

Discussion?
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