

Lecture 13 Timing Analysis, Part 2

Xuan 'Silvia' Zhang Washington University in St. Louis

http://classes.engineering.wustl.edu/ese461/

Review: Timing in Digital Logic

• Setup slack

Positive slack	
Timing requirement m	е

Negative slack Timing requirement not met

Review: Timing in Digital Logic

Timing requirement me

• Hold slack

Timing requirement not met

Review: Static Timing Analysis

- Timing Type
 - Combinational Timing (Delay)
 - Setup Timing (Check)
 - Hold Timing (Check)
 - Edge Timing (Delay)
 - Present and Clear Timing (Delay)
 - Recovery Timing (Check)
 - Removal Timing (Check)
 - Three State Enable & Disable Timing (Delay)
 - Width Timing (Check)
- Interconnect Delay

- Timing Constraints
 - path delay between two flip-flops must be less than one clock period
 - once clock specification is fixed, timing constraint is fixed between all flip flops

• Path

- FF Clock to FF Input
- PI (Primary Input) to FF Input
- FF Clock to PO (Primary Output)
- PI to PO

- Boundary Conditions: External Environment
 - driving cell
 - input transition time
 - output capacitance load
 - input delay

 Once boundary condition is defined, all four types of paths can be converted into the 1st type of path

• Timing Model

Gate 0-1	3ns	FF Setup	1ns	Clock N.L. (Dclkn)	3ns
Gate 1-0	2ns	FF Hold	1ns	Clock Uncertainty (Dclku)	1ns
Net	2ns	Clock	14ns	Input Delay (Da, Db, Dc)	1ns
FF CLK-Q	3ns	Clock S.L. (Dclks)	2ns	Output Delay (DY)	3ns

• Find Timing Path

• Path 1: Arrival Time when A: 0->1

 $AT = D_a + 2 + 3 + 2 + 3 + 2 = 13ns$

• Path 1: Arrival Time when A : 1->0

 $AT = D_a + 2 + 2 + 2 + 3 + 2 = 12ns$

• Path 1: Required Time

- Path 1:
 - Slack 0->1
 - "+" = GOOD

Slack = RT - AT = 17 - 13 = 4ns

- Slack 1->0
- "+" = GOOD

Slack = RT - AT = 17 - 12 = 5ns

• Path 2: Arrival Time when B: 0->1

 $AT = D_{alks} + D_{alko} + 3 + 2 + 3 + 2 + 3 + 2 = 20ns$

• Path 2: Arrival Time when B: 1->0

• Path 2: Required Time

 $RT = D_{cllop} + D_{cllos} + D_{cllos} - D_{cllou} - T_s = 14 + 2 + 3 - 1 - 1 = 17ns$

- Path 2:
 - Slack 0->1
 - "—" = BAD

- Slack 1->0 - "—" = BAD

• Path 3: Arrival Time: 0->1

 $AT = D_{cllos} + D_{cllos} + 3 + 2 + 3 + 2 = 15ns$

• Path 3: Arrival Time: 1->0

• Path 3: Required Time

$$RT = D_{cllgr} - D_{gr} = 14 - 3 = 11ns$$

- Path 3:
 - Slack 0->1
 - "—" = BAD

Slack = RT - AT = 11 - 15 = -4

- Slack 1->0
- "—" = BAD

Slack = RT - AT = 11 - 14 = -3

Timing Violation

W.S.E

- Setup violations
- Hold violations
- Transition violations

Setup Time Violation

- Data path too slow compared to the clock speed at the latch edge
- Fix setup violations
 - reduce delay in data path
 - increase delay in clock
 - reduce number of buffers in the path
 - increase the size of buffers
 - reduce capacitance
 - reduce clock uncertainty
 - insert buffers for the clock
 - reduce clock speed (fix violation after tapeout)

Hold Time Violation

- Data not held long enough after latch edge
 - new data is too fast compared to the clock speed
- Fix hold time violations
 - adding buffers to the data path
 - reduce buffer size in the data path
 - add more capacitance to the buffer output
 - time borrowing from setup time margin

After tapeout, no way to save hold time violation!

Transition Violations

- Signal takes too long transiting from one logic level to another
 - meta-stable
- Fix transition violations
 - modify data path, instead of adjusting register location, or adding buffers to the global clock; otherwise you cause more violations than you fix
 - reducing capacitance
 - adding a buffer
 - using more powerful device
 - reduce resistance (increase width of route)

W.SHL

Questions?

Comments?

Discussion?