
Lecture 11
Logic Synthesis, Part 2

Xuan ‘Silvia’ Zhang
Washington University in St. Louis

http://classes.engineering.wustl.edu/ese461/

Write Synthesizable Code

•  Use meaningful names for signals and variables
•  Don't mix level and edge sensitive elements in the same always

block
•  Avoid mixing positive and negative edge-triggered flip-flops
•  Use parentheses to optimize logic structure
•  Use continuous assign statements for simple combo logic
•  Use nonblocking for sequential and blocking for combo logic
•  Don't mix blocking and nonblocking assignments in the same

always block (even if Design compiler supports them!!).
•  Be careful with multiple assignments to the same variable
•  Define if-else or case statements explicitly

2

Memory Synthesis

•  Random logic using flip-flops or latches
–  use large vector or arrays in HDLs
–  inefficient in areas and performance
–  e.g.: a flip-flop takes up to 10 to 20 times area of a 6T

SRAM cell

•  Register files in datapaths
–  synthesized to a datapath component
–  dependent on software tool and technology

•  Memory compilers
–  most area-efficient and high-performance solution
–  foundry, tool, or 3rd party provider

3

Outline

Write Synthesizable Code

Write Synthesis Script

4

Design Flow of Synthesis

•  Set search paths and timing library
•  Load HDL file
•  Perform elaboration
•  Apply Constraints
•  Apply Optimization settings
•  Synthesis
•  Analysis for constraints
•  Export Design
•  Netlist and SDC

19

20

Design Flow of Synthesis

•  Set search paths
–  search_path
–  This is the search path for source files and also the the

technology library files

•  Use set command
–  set search_path <path>
–  where <path> is the full path of your target library,

script, or HDL file locations.

•  analyze
–  Will translates HDL to intermediate format

•  read_verilog
–  Will do the job of analyze and elaborate

21

Design Flow of Synthesis

•  Performing Elaboration
–  elaborate
–  Builds data structures
–  Infers registers and latches in the design
–  Performs high-level HDL optimization, such as dead code

removal
–  Checks semantics: meaning of sub blocks

22

Design Flow of Synthesis

•  Applying Constraints
•  The constraints include

–  Operating conditions
–  Clock waveforms
–  I/O timing

•  You can apply constraints in several ways
–  Type them manually in the RTL Compiler shell
–  Include a constraints file
–  Read in SDC constraints

•  Two types of constraint
–  Design Rule Check
–  Optimization Constraints

23

Design Flow of Synthesis

•  Applying Optimization Constraints
–  DRC
–  Timing
–  Power
–  Area

•  You can perform any of the following
optimizations
–  Remove designer-created hierarchies (ungrouping)
–  Create additional hierarchies (grouping)
–  Synthesize a sub-design
–  Create custom cost groups for paths in the design to

change the synthesis cost function

24

Design Flow of Synthesis

•  compile _ultra
–  Optimization on full design and complete

paths
–  Usually gives best optimization result
–  No iteration required
–  Simpler constraints
–  Simpler data management
–  More processing required
–  More memory required

11

Design Flow of Synthesis

•  Reports
–  Timing: any violation in the timing reports

leads to error. Usually solved by operating at
lower clock frequencies

–  Area: the rough cell area report before
making place and route

–  Power: depends on the operating conditions.
Some Technology libraries provide WCCOM
option for simulating at worst case conditions

–  Design: overview of the whole simulation in
DC compiler

12

Synopsys Design Constraints (SDC)

•  Specify the design intent, including the timing,
power, and area constraints for a design

•  SDC is Tcl based
•  Information in the SDC

–  The SDC version (optional)
–  The SDC units (optional)
–  The Design Constraints
–  Comments (optional)

27

Synopsys Design Constraints

•  SDC version:
–  Variable name: sdc_version
–  e.g.: set sdc_version 1.9

•  SDC Units
–  Command name: set_units
–  Specify units for capacitance, resistance, time,

voltage, current, and power
–  e.g.: set_units –capacitance 1pF
–  e.g.: set_units –time 1ns

28

Synopsys Design Constraints

29

Synopsys Design Constraints

30

Synopsys Design Constraints

31

Synopsys Design Constraints

•  create_clock
–  Name
–  Period
–  Waveform
–  [get_ports {}]
–  e.g.: create_clock –name “clk” –add –period 500.0 –

waveform {0, 250} [get_ports{clk}]

32

Technology Library files

•  db file
–  the actual information about the cells used in the

linking

•  sdb file
–  information about the symbols used for the cells in the

standard cell library
–  used in the process of P&R because we can see the

black boxes instead of the gate level logic.

•  LEF file
–  related to the P&R tools
–  layout exchange file which has information regarding

no of layers of metal used or available for P&R.

19

Lab #4: Dual-Clock FIFO

•  Due 10/19 (Wednesday)
•  Cross different clock domains

–  handshake signaling
–  asynchronous first-in-first-out buffer (FIFO)

•  FIFO
–  two interfaces
–  two clocks
–  one for write, one for read

20

Questions?

Comments?

Discussion?

21

