

Lecture 2 Review on Digital Logic (Part 1)

Xuan 'Silvia' Zhang
Washington University in St. Louis

http://classes.engineering.wustl.edu/ese461/

Grading

•	Engagement	5 %
---	------------	------------

- Review Quiz 10%
- Homework 10%
- Labs 40%
- Final Project 35%

• Policy:

- 90% or above A
- **80% 89**% B
- 65% 79%
- 45% **-** 64%
- 44% or below

Number Systems

- Decimal (radix r=10)
 - digits 0-9
- Binary (radix r=2)
 - $(1011.01)_2 = (.)_{10}$
- Octal
 - radix = 8
- Hexadecimal
 - each HEX digit can represent 4 bits
 - $(10011110.0101)_2 = (...)_{16}$
 - $(11110010.0001)_2 = (...)_{16}$
 - $(11010100.1111)_2 = (...)_{16}$

Base Conversion

- Convert the integer part
- Convert the fraction part
- Join the two results with a radix point
- Example: $(325.64)_{10}$ to $(...)_5$

$$-2*5^3 + 3*5^2 = 325$$

$$-3*5^{(-1)} + 1*5^{(-2)} = 0.64$$

$$\sum A_i r_1^i = \sum B_i r_2^i$$

Range of Numbers

- Integer (n-bit Number)
 - 2ⁿ different numbers
 - Min: 0
 - Max: 2ⁿ-1
- Fraction (m-bit Number)
 - Min: 0
 - Max: $(2^m-1)/2^m$

Complements

- Diminished Radix Complement of N
 - defined as $(r^n-1)-N$, with n = number of digits or bits
 - 1's complement for binary (radix = 2)
- Radix Complement
 - defined as rⁿ-N
 - 2's complement for binary

Why

- subtraction as addition of complement
- if negative?

Binary Complement

- 1's complement
 - complement each individual bit (bitwise NOT)
- 2's complement
 - 1's complement plus 1
 - alternative
 - start from the least significant bit (LSB)
 - copy all least significant 0's
 - copy the first 1
 - complement all bits thereafter

Subtraction with 2's Complement

- For n-digit unsigned numbers M and N
- M N = ?
 - add 2's complement of N to M
 - $-M + (2^n N) = M N + 2^n$
- Example
 - carry 1
 - carry 0

Signed Binary Numbers

- To represent a sign (+ or -)
 - need one more bit
 - sign + magnitude
 - signed-complements
- Positive numbers unchanged
- Negative numbers use one of the two methods

_	#	sign+	1's	2's
_	+2	010	010	010
_	-2	110	101	110
_	+3	011	011	011
_	-3	111	100	101
_	+0	000	000	000
_	-0	100	111	000

2's Complement Arithmetic

Addition

- represent negative number by its 2's complement
- add the number including the sign bits
- discard a carry out of the sign bits
- e.g. $M + (-N) \rightarrow M + (2^n-N)$

Subtraction

- $M N -> M + (2^n N)$
- form the complement of the subtrahend
- follow the rules for addition

Overflow

- Error occurs when out of range
 - [-2ⁿ⁻¹, 2ⁿ⁻¹-1]
 - carry-in into the sign bit different from the carry-out

-39 + 92 = 53:

1	1		1	1					
	1	1	0	1	1	0	0	1	
+	0	1	0	1	1	1	0	0	
	0	0	1	1	0	1	0	1	_

Carryout without overflow. Sum is correct.

 \bullet 104 + 45 = 149:

Overflow, no carryout. Sum is not correct.

• 10 + -3 = 7:

Carryout without overflow. Sum is correct.

• -19 + -7 = -26:

1	1	1	1	1			1		
	1	1	1	0	1	1	0	1	
+	1	1	1	1	1	0	0	1	
	1	1	1	0	0	1	1	0	

Carryout without overflow. Sum is correct.

• -75 + 59 = -16:

		1	1	1	1	1	1		
	1	0	1	1	0	1	0	1	
+	0	0	1	1	1	0	1	1	
	1	1	1	1	0	0	0	0	

No overflow nor carryout.

• 127 + 1 = 128:

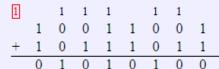
Overflow, no carryout. Sum is not correct.

 \bullet 44 + 45 = 89:

		1		1	1				
	0	0	1	0	1	1	0	0	
+	0	0	1	0	1	1	0	1	
	0	1	0	1	1	0	0	1	

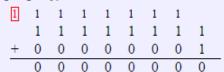
No overflow nor carryout.

• -103 + -69 = -172:



Overflow, with incidental carryout. Sum is not correct.

 \bullet -1 + 1 = 0:



Carryout without overflow. Sum is correct.

Outline

Number Representation

Boolean Logic and Gates

Combinational Logic

Binary Logic and Gates

Basic logic operations

- AND: X·Y

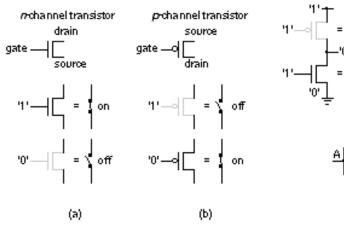
- OR: X+Y

- NOT: \overline{X} or /X

Truth table

- all possible input combinations

CMOS as a switch



Boolean Algebra

Basic identities

1.
$$X + 0 = X$$

3.
$$X + 1 = 1$$

5.
$$X + X = X$$

7.
$$X + \overline{X} = 1$$

9.
$$\overline{X} = X$$
 Involution

Multiple Variables

2.
$$X \cdot 1 = X$$
 Existence 0 and 1 or operations with 0 and 1

- 4. $X \cdot 0 = 0$
- Idempotence 6. $X \cdot X = X$
- 8. $X \cdot \overline{X} = 0$ Existence complements

10.
$$X + Y = Y + X$$

12.
$$(X + Y) + Z = X + (Y + Z)$$

14.
$$X(Y+Z) = XY+XZ$$

16.
$$\overline{X + Y} = \overline{X} \cdot \overline{Y}$$

13.
$$(XY) Z = X(Y Z)$$

Distributive 15.
$$X + YZ = (X + Y) (X + Z)$$

11. XY = YX

17.
$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

Boolean Algebra

Other useful theorems

$$XY + \overline{XY} = Y \qquad \text{Minimization} \qquad (X + Y)(\overline{X} + Y) = Y$$

$$X + XY = X \qquad \text{Absorption} \qquad X(X + Y) = X$$

$$X + \overline{XY} = X + Y \qquad \text{Simplification} \qquad X(\overline{X} + Y) = XY$$

$$XY + \overline{XZ} + \overline{YZ} = XY + X\overline{Z} \qquad \text{Consensus}$$

$$(X + Y)(\overline{X} + Z)(Y + Z) = (X + Y)(\overline{X} + Z)$$

Standard (Canonical) Forms

- For comparison of equality
- Correspondence to the truth table
- Sum of Products (SOP)
 - sum of minterms
- Product of Sum (POS)
 - product of maxterms

Index	Minterm	Maxterm
0 (00)	/x/ y	x + y
1 (01)	/x y	x + /y
2 (10)	x /y	/x + y
3 (11)	ху	/x + /y

Relationship between min and MAX term

$$M_i = \overline{M}_i \qquad M_i = \overline{M}_i$$

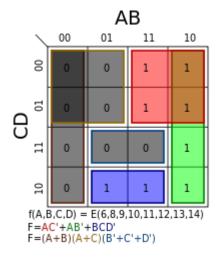
Circuit Optimization

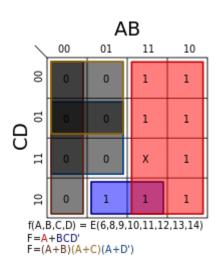
- Simplest implementation
- Cost criterion
 - literal cost (L)
 - gate input cost (G)
 - gate input cost with NOTs (GN)
- Examples (all the same function):

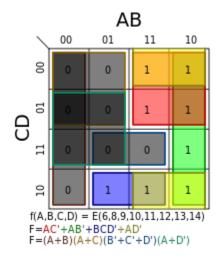
- Which solution is best?

Karnaugh Maps (K-map)

- Simplify Boolean algebra
- Transfer truth table to 2D grid
 - ordered in Gray code
- Human's pattern recognition capability
 - don't cares
 - race hazards







Other Gate Types

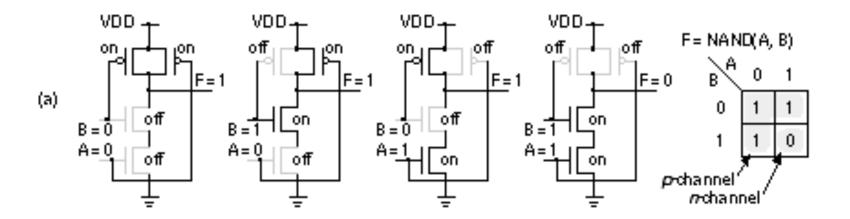
		$A- \longrightarrow A$					
A	В	BUF	NAND	NOR	XOR	XNOR	
0	0	0	1	1	0	1	
0	1	0	1	0	1	0	
1	0	1	1	0	1	0	
1	1	1	0	0	0	1	



Truth Table

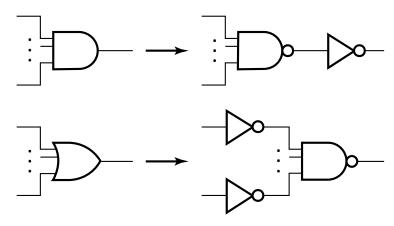
EN	IN	OUT
0	Χ	Hi-Z
1	0	0
1	1	1

CMOS NAND and NOR Gates

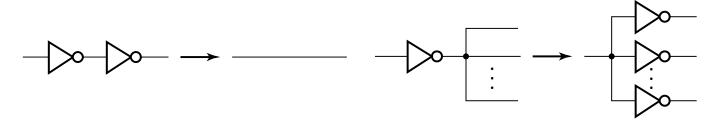


NAND Mapping Algorithm

Replace ANDs and ORs

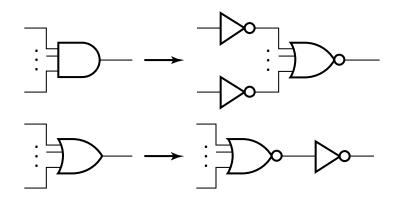


- Repeat until there is at most one inverter between
 - a circuit input or driving NAND gate output
 - the attached NAND gate inputs

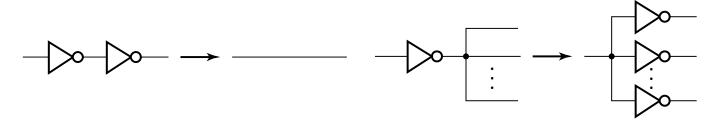


NOR Mapping Algorithm

Replace ANDs and ORs

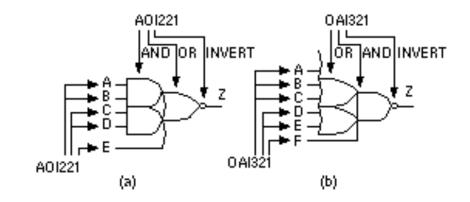


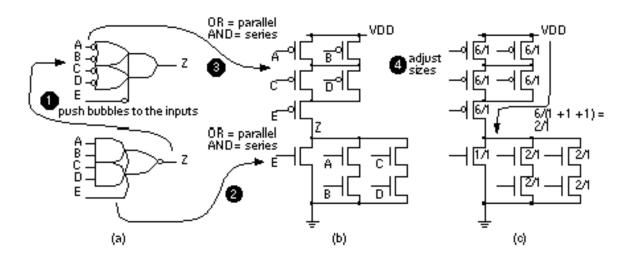
- Repeat until there is at most one inverter between
 - a circuit input or driving NOR gate output
 - the attached NOR gate inputs



Construct AOI and OAI Gates

- AND-OR-INVERT (AOI)
- OR-AND-INVERT (OAI)





Outline

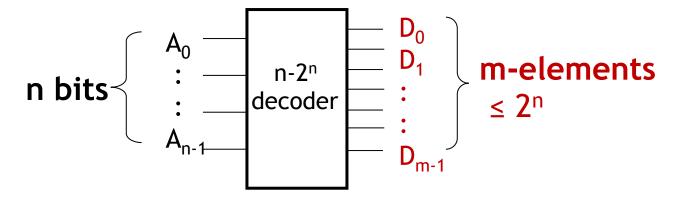
Number Representation

Boolean Logic and Gates

Combinational Logic

Decoding

- n-bit to represent up to m=2ⁿ elements
- convert n-bit input to m-bit output code
 - $-n \le m \le 2^n$



- outputs correspond to minterms: D_i = m_i
- divide into smaller decoders

Arbitrary Combinational Logic

- Decoder and OR gates
 - implement m functions of n variables
 - SOP expressions
 - one n-to-2ⁿ line decoder
 - m OR gates, one for each output

ABC	<u> F</u>	Indicate MSB, LSB
000	0	
0 0 1	0	A 1 -
0 1 0	0	2 -
0 1 1	1	$\frac{B}{4}$
100	0	0 5
1 0 1	1	$\begin{array}{c c} & 6 \\ 7 & \end{array}$
1 1 0	1	
1 1 1	1	$F=\Sigma m(3,5,6,7)$

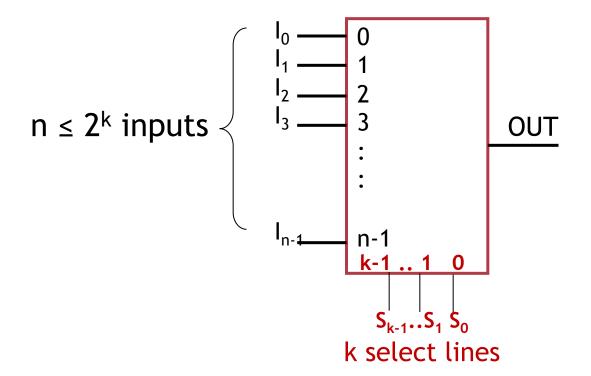
Encoding

- Convert one-hot code to its position
 - assume exactly one bit is 1
 - need to know its position
- Priority
 - more than one input value is 1

Multiplexing

Select data

- a set of n information inputs to select from
- a set of k control (select) lines to make selection
- a single output

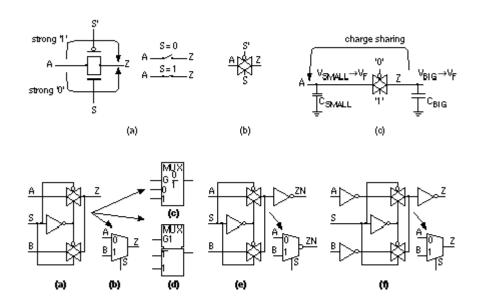


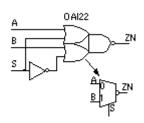
MUX Realization

SOP Expression

$$OUT = \sum_{i=0}^{2^{k-1}} I_i$$

Transmission gates





Questions?

Comments?

Discussion?

Homework #1

- Download problem sets from class website
- Due 09/07 (Wednesday) in class
- No grace period