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• Education and training of students in multiphase reaction systems 
• Advancement of reaction engineering methodology via research 
• Transfer of state-of-the-art reaction engineering to industrial practice 
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TRICKLE BED REACTOR 

 

PACKED BUBBLE COLUMN 

Packed catalyst beds with two phase flow  are used in many 
heterogeneous catalytic processes. Models evolved from 
empirical with experimental validation on reactor scale via 
phenomenological  multiscale analysis to fundamental with 
sophisticated validation on all scales 
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TRICKLE BED AND PACKED BED BUBBLE COLUMN 
UPFLOW REACTORS: Topics Studied and Modeled 

a. Mode of operation 
b. Phenomena affecting performance 
c. Processes used for 
d. Heat removal strategies 

 
A. TRICKLE BED REACTORS 
a. Flow regimes     
b. Pressure drop and holdup 
c. Transport coefficients 
d. Liquid-solid contacting 
e. Catalyst utilization (effectiveness) 
f. Scale-up strategy (liquid limiting reactant) 
g. Packing laboratory reactors 
h. Axial dispersion 
i. Incomplete contacting and global liquid mal-distribution 
j. Catalyst utilization and scale-up for gas limiting reactions 

  
B.   PACKED UPFLOW BUBBLE COLUMNS 
a. Flow regimes     
b. Prediction of performance 
c. Comparison with trickle beds 



“But this is the simplified version for the general public”. 



“He was very big in Vienna”. 
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Co-current gas-liquid down-flow in a packed 
bed 

Macro (bed) scale 

Gas 

Liquid 

Gas 

Liquid 

Meso scale 
Micro (particle) scale 

 

0.001<Gm<2 kg/m2s  

0.08<Lm<25 kg/m2s 

Porous catalyst: 

0.08<dp<0.4 cm 

Bed height: 

0.2 - 20 m 

LHSV:0.5 to 10 hr-1 

Multiscale  Phenomena Affecting TBR Performance 
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• External mass transfer resistance 
(VLE data, transfer parameters estimates…) 
• Intraparticle mass transfer and kinetic resistance 
(particle scale models, transfer parameters) 
• External catalyst surface wetting in a bed 
(phenomenological and CFD models)  

• Local concentration field 

• Average rate influenced by reactor scale contacting pattern 
(liquid distribution) and phase RTD 

• Flow regime effects the phase holdups and inter-phase 
transport coefficients. 



TBR Performance Assessment: Multi-Scale Approach 

Reactor scale: 
• Phase distributions 
• Mal-distribution 
Can observe via CT  
(CREL) 

Phenomenological analysis: 
• Flow structures 
• Description of phase 
interactions 

“Rivulet flow” 
“Film flow” 

Particle scale model: 
• Influence of local hydrodynamics 
• Phase contacting and interphase mass/heat 
transport 
• Intraparticle mass/heat transport (single or 
multi component) and reaction 

Complete catalyst 
wetting 

Incomplete 
wetting 

• TBR performance affected by particle scale & reactor scale flow phenomena 

• Need to couple:  1) reactor scale CFD model; 2) particle scale models 

Can observe via NMR; Gladden et al.;,X-ray, Nicol 
et al. 



Partial External Wetting 

cm/susmkgL L  3.0or  / 3 2 <<

Mills, CREL  (1980) 

L(kg/m2s) 



Dependence of Apparent Rate Constant (kapp) on 
Transport (kls, ηp) and Kinetic Parameters (kv) 
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Liquid reactant limited reaction  (Non volatile liquid) 

catalyst into rate
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Dependence of Particle Overall Effectiveness Factor (ηTB) 
for Partially Wetted Pellet on Contacting Efficiency (ηCE) 

(Observed local reaction rate in partially wetted particle)
(Ideal local reaction rate on completely wetted catalyst)TBη =
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For liquid limiting reactant 
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Indeed an increase in ηCE, which results from the increase in L, 
always increases kapp 
 
Deviations from scale-up predictions can be caused by: 
 
- Reaction not nonvolatile liquid limited 
- Global liquid maldistribution or coring 
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Example: nonvolatile liquid, 1st order 
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Using i) same catalyst activity 
          ii) same size particles 
         iii) same packing procedure (εB) 
         iv) same feed 
          v) same temperature 

RULE: The plant reactor (P) and laboratory reactor (L) should yield 
same performance (xB) at same LHSVP = LHSVL 
 
Since the plant reactor is always taller                      
So that transport resistances are always diminished in the large 
reactor.  
 Under what conditions is that so? 
 
                 

Use of Plug Flow Model for Scale-Up 

then
P L P LR R L LH H u u> >



Comparison of a commercial reactor with pilot reactors of different lengths in gas oil 
hydrodesulfurization. The results are plotted as a pseudo-second-order reaction, which has 
been found to be an adequate way of describing the space velocity/sulfur removal relationship 
for this multicomponent mixture. Sf and Sp represent the sulfur contents of feed and product, 
respectively, in %w. k is the rate constant for hydrodesulfurization. 

kkapp 0η=
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Catalyst Volume (m3) 248 0.001 
Catalyst Bed Length (m) 25.0 1.3 
Reactor diameter (m) 3.35 0.025 
Liquid flow rate (kg/sec) 41.70 0.000069 
Liquid mass velocity (kg/m2sec) 4.73 0.137 
Gas mass velocity (kg/m2sec) 0.61 0.0177 
Gas flow rate (kg/sec) 5.4 0.00009 
Liquid phase Reynolds number 10.48 0.303 
Gas phase Reynolds number 72.50 2.10 
LHSV, hr-1 1.39 1.39 

Comparison of commercial hydro-treater with lab/bench reactor 
Commercial Lab/Bench 
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Consequences of Liquid Maldistribution 

Poor micro-distribution: 

• Regions of unwetted catalyst 

• Delayed gas dissolution in 
liquid 

Poor macro-distribution: 

• Radial temperature gradients  

• Gas-liquid separation further 
down bed 

• H2 deficiency in liquid further 
down bed 

Overall impact: 

• Apparent catalyst activity loss  

• Failure to meet products specs  



Effect of Reactor Scale Maldistribution  
on Performance (HDS) 

(Mobil, 1994) 
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Partial wetting : Gas limiting reactant 

cm/susmkgL L  3.0or  / 3 2 <<



For gas limiting reaction (1st order) conversion of liquid is given by 
(PFR) 
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Note:  The above gas-limiting reaction can switch to liquid diffusion 
limited when 
 
 
Note:  In dried out catalyst particles Thiele modulus may be 100 
fold lower than in liquid filled pellet and reaction many fold faster! 
Locally this can lead to hot spot!! 

lBlo

ae
B DB

DvAx
*31 Λ

−>



DATA PLANT LAB 
Height (m) 19.4 0.235 
Diameter (m) 0.455 0.0341 
LHSV (hr-1) 1.3 1.3 
UL (LSV) (mhr-1) 26 0.26 
H2 FLOW (STD) (m3hr-1) 1000 0.067 
GHSV (hr-1) 312 312 
Pressure (bar) 70 70 
Temperature (C)  110 110 
Bed porosity  0.425 0.425 
Catalyst tablets  3/16´´ x1/8´´ 3/16 ´´ x 1/8´´ 
Conversion (xB) 0.4 0.9 
Contacting efficiency 1.0 0.51 

 TBR SCALE-UP Failure  based on LHSV=const. 
        Aldehyde Hydrogenation, Scale-up done based on equal LHSV  
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Nonvolatile liquid limited reaction 1st order : A(g) + B(l) = P(l) + G(g) 
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Using: i) same catalyst activity,  ii) 
same size particles, iii) same packing 
procedure (εB), iv) same feed, 
  v) same temperature 

Gas limiting reaction (1st order): A(g) +B(l) = P(l) +G(g) 
Conversion of liquid in PFR is given by: 
 

Plug Flow Model for Scale-Up in Absence of Maldistribution (LHSV=Const) 
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 Failure of LHSV = const Scale-up for Liquid 
Limited Reaction in a Trickle Bed 

• LHSV = const. scale up worked well for previous catalysts but 
failed for a much more active catalyst in hydrogenation of a 
non-volatile liquid reactant to the first hydrogenation product 
which was desired. 

• The reason is that the large diameter reactor suffered from 
liquid maldistribution which with the much more active 
catalyst led to over-hydrogenation to other  products in the 
regions of locally higher residence times. 

• The locally high temperatures were detected at some radial 
positions partly into the bed well in excess of the adiabatic 
temperature of the first reaction confirming the above 
assumption. 

• A predictive model would have avoided this! 



     Trend in TBR Scale-up 
- Laboratory scale representation of commercial reactors 
- Direct scale-up from laboratory micro reactor to commercial 
reactor design 
 

  Advantages of smaller scale 
-Cheaper   -Less infrastructure 
-Less material needs  -Safer 
-Lower utility costs  -Better working practice 

 
        Parameters Commercial Pilot Bench Micro 
Catalyst volume (L) 100,000 10 0.15 0.008 
Diameter of bed (cm) 250 4 2 1 
Length of bed (cm) 2000 800 50 10 
Superficial velocity (cm/s) 1.1 0.4 0.03 0.006 
Reynolds Number 55 22 1.4 0.3 
Liquid use (L/h) 20 0.3 0.016 
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More Recent  Modeling Approaches 
-Prediction of global bed properties like liquid holdup, pressure drop, 

transport coefficients using the expert system and most 
comprehensive database assembled by Larachi and colleagues 
(Multi_R_Designer, Larachi et al. 2000) 
 

- Using statistical description of bed porosity distribution for 
prediction of flow and holdup distribution by CFD (Euler-Euler) or 
minimization of energy dissipation (Holub, Jiang, Guo –CREL). 
Develop 2-D cell network model (Jiang, Guo- CREL) 
 

- Using more detailed mass and energy balances on particle scale and 
reactor scale and detailed multi component transport to describe 
steady and transient TBR behavior (Khadilkar , Kuzeljevic–CREL) 

- Detailed statistical description of packing, micro scale flow 
description coupled with macro scale bed CFD (Combest –CREL) 
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CREL TRICKLE BED WORK MAIN CONTRIBUTORS: 

   J. SCHWARTZ (1975)   - Amoco / BP 
   P.L. MILLS (1980)         - DuPont/Texas A&M Kingsville 
   A. EL-HISNAWI (1981)   - L.A.E.A 
   E. BEAUDRY (1985)         - Solarex 
   P. HANRATTY (1988)       - D.M.C. / Aspen / ExxonMobil 
   R. HOLUB (1991)        - Ethyl / Albemarle 
   M. AL-DAHHAN (1993)   - Xytel/WUSTL/ MST 
   M. KHADILKAR (1998)   - General Electric/SABIC 
   J. WU (1998)                      - Wuhan Institute of Technology 
   Y. JIANG (2000)                - Conoco / Corning 
   J. GUO (2004)                    - UOP 
   Z. KUZELJEVIC (2010)  -  SABIC 
    D. COMBEST (2012)   - Engys Ltd. 

 
 

 



Simulation Results: Multiplicity Effects 
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• Hysteresis Predicted 
• Two Distinct Rate Branches Predicted 
    (As Observed by Hanika, 1975)  
• Branch Continuation, Ignition and 
   Extinction Points   
• Wet Branch Conversion (~30 %) 
• Dry Branch Conversion (> 95 %) 

• Wet Branch Temperature Rise (~10-15 °C) 
• Dry Branch Temperature Rise    (~140-160 oC)  
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Data from Hanika et al., (1976)  
 1D model  Khadilkar et al. (1998)  
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• Abrupt drop in liquid flow 
• Temperature rise after liquid-  
   gas transition 

• Abrupt change in catalyst wetting 
• Cyclohexene and cyclohexane 
   mole fraction show the effect of  
   evaporation and reaction  
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Khadilkar (CREL), 1998  1D model 



Performance Enhancement by Periodic Operation 
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Hydrogenation of α-Methylstyrene to Cumene 
-under gas limited conditions at different cycle splits  



2-D Rectangular Bed (Liquid Holdup Snapshot) 
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60s cycle time = 15s turn-on + 45s turn-off  

Dimensions:  29.7 cm x 7.2 cm 
  33 cells (z) x 8 cells (x) 
Distributor:           2 cells (L); 8 cells (G) 
Velocities: 0.1 cm/s (L)-time averaged 
  10. cm/s (G)  

1.0 - ε (r,z) 

0    15    30          60 s 

Jiang et al, 
AIChEJ 2001 



CONCLUSIONS AND  CHALLENGES 
• More detailed models that couple the reactor scale and 

particle scale events and account fully for momentum 
conservation, in addition to energy and species mass, are 
increasingly available. Their continued weakness is lack of 
understanding of bed structure and uncertainties in models for 
phase interactions. Data for proper validation on large scale 
reactors is not available. 

• More sophisticated experimental techniques (NMR, X-ray, 
gamma ray CT, etc.) are being used to generate more detailed 
pictures of flow and reactant distribution on particle scale and 
meso scale. There has been lack of success in using this 
information to generate ‘closure’ terms for large scale models. 
Prediction of reactor runaway is still not feasible. 

• The wide GAP between academic research and industrial 
practice is widening. It is aggravated by the diminishing 
expertise in the multiscale approach. 



Modeling of Gas-liquid Flows in Trickle Bed Reactors 
 Gunjal and Ranade (2000) 

Multiscale Modeling Approach 

Microscopic 
Models 

Particle Scale Model 
•Particles 
Arrangements 
•Capillary Forces 

Mesoscopic 
Models 

 

Macroscopic 
Models 

 

Applications 
of Models 

Direct Numerical 
Simulation 
Volume of Fluid  

Mueller’s Correlation 

Gaussian Distribution  

Eulerian-Eulerian 

Multi-phase Model   

 
Pressure Drop 
Liquid Hold-up 
WPF 
RTD 

 
Drop Dynamics 
Drop Spreading 
Contact Angle 

Experimental Validation Experimental Validation 

Local Porosity Variation 
•Axial Porosity Variation 
•Radial Porosity Variation 

Reactor Model 
•Hydrodynamic 
Parameters 
•Liquid Distribution  

Reactor Design 
•Mixing in Reactor  
•Performance of the 
Reactor  
 

 



• Volume averaged equations on the computational grid 

• Porosity distribution on the computational grid (CT data; Gaussian) 

• Phase interactions closures (two fluid model, statistical hydrodynamics 
and relative permeability model) 

• Account for pressure difference between gas and liquid phase (“capillary 
closure”) 

• Solution strategy (Fluent/Gambit with Matlab and C codes) 

3D Hydrodynamic Eulerian CFD Model 
Model setup: 

Basic input parameters: 

• Ergun parameters (E1, E2 for the bed of interest via one phase flow 
experiments) 

• Contact angle (determines likelihood of film vs. rivulet flow) 

• Liquid phase relative permeability 



CFD based multiphase flow modeling 

CFD-related work 
Implement the porosity distribution of the bed in k-fluid model 
Validate the k-fluid CFD simulation and evaluate the closures  

CFD 

UL 

Jiang, Guo, 
Kuzeljevic 
CREL , 2000-2010 



Liquid Distribution in Trickle Bed Reactors - Experimental Setup 

• Exit Liquid 
Distribution 

• Computed 
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• Computed Tomography 
 Liquid holdup 

Cross-sectional liquid holdup and exit liquid distribution are compared in the region close to the reactor 
bottom. Results are  in good qualitative agreement even though two different parameters (i.e. liquid 
holdup and exit liquid fluxes) are compared but that is not always the case. CFD predictions remain a 
challenge! 

• Exit Liquid Distribution 



Micro-Scale Modeling of Packed 
Beds 

Packing 
• Randomly packed domains of (102-103) cylindrical particles are made from a 

Monte-Carlo packing algorithm. 
• Because the exact location of the faces of the particles are known, 

computational meshes are accurately constructed.  
Modeling 
• Micro-scale models of packed beds are based on the Navier-Stokes 

equations without an Ergun-type pressure closure relation 
• More complex conjugate heat transfer models (including heat transport in 

solids) are being developed 
Advanced Hardware Integration 
• Because of the size of the sparse matrices produced by these meshes, a 

computational paradigm shift is necessary to leverage new technology in 
widely used CFD software.  

• Integration of Graphics Processing Units (GPU) to solve these sparse linear 
systems is being performed with multiple times speedup compared to CPU 
based linear system solvers. 

• Integration of GPU based solvers into OpenFOAM code is currently 
available. 

Combest (2012) CREL 



CONCLUSIONS AND FUTURE CHALLENGES 
• More detailed models that couple the reactor scale and 

particle scale events and account fully for momentum 
conservation, in addition to energy and species mass, are 
increasingly available. Their continuous weakness is lack of 
understanding of bed structure and uncertainties in models for 
phase interactions. Data for proper validation on large scale 
reactors is not available. 

• More sophisticated experimental techniques (NMR, X-ray, 
gamma ray CT, etc.) are being used to generate more detailed 
pictures of flow and reactant distribution on particle scale and 
meso scale. There has been lack of success in using this 
information to generate ‘closure’ terms for large scale models. 
Prediction of reactor runaway is still not feasible. 

• The wide GAP between academic research and industrial 
practice is widening. It is aggravated by the diminishing 
expertise in the multiscale approach. 



Consequences of Liquid Maldistribuition: 
Simulated Hot Spot for Low Flow Region 

(3.3 inch Diameter Low Flow Region) 

Mobil;Jaffe, 
I&EC, 1974 

• In presence of hot spot catalyst dry-out 
may occur leading to rates 100-500 times 
higher due to reduced diffusional 
resistance – this feeds the hot spot 



Past & Present… … Future 

Reaction Engineering of Heterogeneous Catalytic  
Systems... Art Science 

CHEMICAL  REACTION  ENGINEERING  LABORATORY 

Science 
Based 
Multi-scale 
Engineering 
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Test Case 

 



Test Reaction 

Catalyst: 0.05%, 0.5%, 2.5%,5% Pd on Al2O3 
Solvents: Hexane, Cyclohexane, Toluene, Isopropanol 
Approach: 
• Kinetic experiments 
 - True kinetics (slurry) 
 - Apparent kinetics (basket) and effectiveness factor determination 
• Tracer experiments in Trickle Beds 
 - Internal wetting 
 - External wetting 
• Trickle bed reactor models 
 - Conversion prediction 
• Comparison 
 - Model and data (down-flow) 
 - Of three modes of operation 

Beaudry (1985), Beaudry et al. (1986) 



Intrinsic Kinetic Rate 

Intrinsic kinetics represent the reaction rates without the following limitations: 

External mass transfer Internal diffusion Catalyst deactivation! 

• Use crashed catalyst 
(decrease catalyst size) 

• Increase stirring rate 
of the reactor contents 

• Use fresh catalyst 

• Regenerate catalyst 

• To investigate intrinsic kinetics, experiments are performed in a slurry reactor 
using crashed catalyst and the whole system is well mixed 



Apparent Kinetic Rate 

Apparent Kinetics represents the reaction rate without the following 
limitations: 

External diffusion Catalyst deactivation 

• Increase stirring rate 
of the reactor contents 

• Use fresh catalyst 

• Regenerate catalyst 

• To investigate apparent kinetics, experiments are performed in a basket mixed 
reactor using regular fully wetted catalyst. 



Intrinsic, Apparent Kinetics and 
Effectiveness Factor 

Rate) (Intrinsic            x  factor) essEffectiven(        Rate)(Apparent =

• Provides estimate of internal diffusion effects 

• Depends on: 

 - catalyst geometry 

 - effective diffusivity of reactants 

 - reaction rate 



Experimental Setups for Kinetics Investigation 
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Effect of operating conditions 

Reaction rate is first order in hydrogen Reaction rate is zeroth order in alpha-methylstyrene 

All experiments performed in internal and external diffusion limitations free 
regime (crashed particles, intense mixing); this is intrinsic rate 

El-Hisnawi, 1981 



El-Hisnawi, 1981 

Effect of temperature 

Based on measured reaction rate (in absence of internal and external diffusion 
limitations) at different temperatures, activation energy has been found 



Apparent Kinetics - Experimental Results 

Apparent reaction rate as a function of hydrogen partial pressure shows first 
order dependence 

Catalyst: 0.5% Pd on 0.13 cm x 0.56 cm alumina pellets 

Solvent: (a) Cyclohexane (b) Hexane 

 El-Hisnawi, 1981 

(a) (b) 



Reaction rate found to be: 

• First order in hydrogen 

• Zeroth order in alpha-methylstyrene (AMS) 

 

Effectiveness factor of completely wetted pellets  

• In basket (2.5% Pd on Al2O3 at 15oC<T<30oC 

 0.05<ηp<0.08 (cyclohexane) 

 0.17<ηp<0.21 (hexane) 

• In trickle bed (partial wetting) 

  ηTB=f(ηp, ηCE, ηc,Bid,Biw) 
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Experimental Data and Model Predictions Using 
Literature Correlations for Downflow Mass Transfer 
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Reactor Scale Model 
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0.5% Pd on alumina hexane solvent 
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2.5% Pd on alumina cyclohexane solvent 
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Prediction of TBR performance for gas-limited reactions demonstrated 
 
Given: 
 
-Slurry kinetic data 
-Effectiveness factor on particles to be used (basket reactor) 
-Correlation for wetting efficiency 
-Correlations for gas-liquid-solid mass transfer 
-Reactor model that accounts for partially wetted particles 
 
Model predictability demonstrated by 
 
-Changing catalyst activity (0.05%Pd, 2.5%Pd, 5%Pd all on alumina) 
-Changing solvent (hexane, cyclohexane, etc.) 
-Changing reaction system (e.g. hydrogenation of α-methyl styrene    
           and of maleic acid) 
 
Models based on first principles have the predictive ability for 
determination of reactor performance 
  
Importance of partial wetting in trickle beds illustrated. 



TRICKLE BED REACTOR PACKED BUBBLE COLUMN 
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FLOW REGIMES AND CATALYST WETTING EFFECTS 
 

DOWNFLOW (TRICKLE BED REACTOR)       UPFLOW (PACKED BUBBLE COLUMN)  
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Downflow and Upflow Experimental Results under Gas and Liquid  
Limited Conditions without Fines 
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Downflow outperforms upflow due  
  to partial external wetting and  
  improved gas reactant access to  
  particles 

Upflow outperforms downflow due 
  to more complete external wetting and 
  better transport of liquid reactant to  
  the catalyst 

γ = DeL CB / DeG CA 

Khadilkar (1998), Khadilkar et al. (1999) 



ABOUT EQUAL PERFORMANCE  DUE TO COMPLETE WETTING 
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Downflow and Upflow Experimental Results under Gas and Liquid  
Limited Conditions with Fines 
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Conclusions: 
 
 Knowledge of flow regime, limiting reactant and degree of liquid 
volatilization is important in scale-up 
 Constant LHSV is conservative scale-up strategy for liquid limited 
reactions 
 For gas limited reactions only constancy of both LHSV and reactor 
length guarantee conservative scale-up 
 Adsorbing and non adsorbing tracers can provide information on: 
 particle scale incomplete contacting 
 liquid mal-distribution 

 Use of fines separates kinetics from hydrodynamics and reduces 
the differences between up-flow and down-flow 
 Model based prediction of performance of trickle beds is possible 
and highly advisable 
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